We study epitaxial growth, crystal structures, and magnetic properties of Fe–As compound thin films grown on GaAs (111)B substrates at various values of the As4:Fe flux ratio γ, using molecular beam epitaxy. The samples grown at low As4 flux (γ = 0.3, sample A) show mainly a body-centered-cubic (bcc) crystal structure, exhibiting ferromagnetic properties similar to bcc Fe. Meanwhile, the Fe–As samples grown at medium γ (2.7–4.5, sample group B) comprise regions of Ni2In-type FeAs (a hexagonal crystal with lattice constants of a = 0.399 nm and c = 0.536 nm), which are grown at the bottom and interface with the GaAs buffer layer, and a layer of non-stoichiometric FeAs with a DO3 structure (a = 0.522 nm) formed on the top. The DO3-structure FeAs phase contains partially transformed regions, which are characterized by thin stripes in a scanning transmission electron microscopy image. Furthermore, in the sample grown with high γ = 8.5 (sample C), a hexagonal Fe–As crystal with a large in-plane lattice constant (a = 0.691 nm and c = 0.542 nm) and threefold screw axes are observed. None of these crystal structures of Fe–As compounds has ever been reported. While sample C shows no ferromagnetism, the samples in group B exhibit strong ferromagnetism with high Curie temperature TC above 400 K. These new ferromagnetic Fe–As compounds are promising for spintronic device applications.

1.
S. M.
Griffin
and
N. A.
Spaldin
,
Phys. Rev. B
85
,
155126
(
2012
).
2.
G.
Rahman
,
S.
Cho
, and
S.
Cheol Hong
,
J. Magn. Magn. Mater.
304
,
e146
(
2006
).
3.
H.
Akinaga
,
T.
Manago
, and
M.
Shirai
,
Jpn. J. Appl. Phys.
39
,
L1118
(
2000
).
4.
M.
Mizuguchi
,
H.
Akinaga
,
T.
Manago
,
K.
Ono
,
M.
Oshima
,
M.
Shirai
,
M.
Yuri
,
H. J.
Lin
,
H. H.
Hsieh
, and
C. T.
Chen
,
J. Appl. Phys.
91
,
7917
(
2002
).
5.
M.
Shirai
,
T.
Ogawa
,
I.
Kitagawa
, and
N.
Suzuki
,
J. Magn. Magn. Mater.
177
,
1383
(
1998
).
6.
S.
Sanvito
and
N. A.
Hill
,
Phys. Rev. B
62
,
15553
(
2000
).
7.
T. W.
Kim
,
H. C.
Jeon
,
T. W.
Kang
,
H. S.
Lee
,
J. Y.
Lee
, and
S.
Jin
,
Appl. Phys. Lett.
88
,
021915
(
2006
).
8.
H. C.
Jeon
,
T. W.
Kang
,
S. U.
Yuldashev
,
T. W.
Kim
, and
S.
Jin
,
Appl. Phys. Lett.
89
,
112517
(
2006
).
9.
P.
Nam Hai
,
L. D.
Anh
, and
M.
Tanaka
,
Appl. Phys. Lett.
101
,
252410
(
2012
).
10.
L. D.
Anh
,
P. N.
Hai
, and
M.
Tanaka
,
Nat. Commun.
7
,
13810
(
2016
).
11.
L. D.
Anh
,
T.
Hayakawa
,
Y.
Nakagawa
,
H.
Shinya
,
T.
Fukushima
,
M.
Kobayashi
,
H.
Katayama-Yoshida
,
Y.
Iwasa
, and
M.
Tanaka
,
Nat. Commun.
12
,
4201
(
2021
).
12.
T.
Fukushima
,
H.
Shinya
,
A.
Masago
,
K.
Sato
, and
H.
Katayama-Yoshida
,
Appl. Phys. Express
12
,
063006
(
2019
).
13.
H.
Takahashi
,
K.
Igawa
,
K.
Arii
,
Y.
Kamihara
,
M.
Hirano
, and
H.
Hosono
,
Nature
453
,
376
(
2008
).
14.
J. L.
Niedziela
,
L. D.
Sanjeewa
,
A. A.
Podlesnyak
,
L.
Debeer-Schmitt
,
S. J.
Kuhn
,
C.
De La Cruz
,
D. S.
Parker
,
K.
Page
, and
A. S.
Sefat
,
Phys. Rev. B
103
,
094431
(
2021
).
15.
H.
Okamoto
,
J. Phase Equilib.
12
,
457
(
1991
).
16.
A.
Seitkan
,
G. I.
Lampronti
,
R. N.
Widmer
,
N. P. M.
Casati
, and
S. A. T.
Redfern
,
ACS Omega
5
,
6423
(
2020
).
17.
H.
Katsuraki
and
N.
Achiwa
,
J. Phys. Soc. Jpn.
21
,
2238
(
1966
).
18.
K.
Selte
,
A.
Kjekshus
,
V. A.
Drits
, and
V. V.
Ilyukhin
,
Acta Chem. Scand.
23
,
2047
(
1969
).
19.
A.
Błachowski
,
K.
Ruebenbauer
,
J.
Żukrowski
, and
Z.
Bukowski
,
J. Alloys Compd.
582
,
167
(
2014
).
20.
A. K. L.
Fan
,
G. H.
Rosenthal
,
H. L.
McKinzie
, and
A.
Wold
,
J. Solid State Chem.
5
,
136
(
1972
).
21.
F.
Monteverde
,
A.
Michel
,
J.
Kherici
, and
J. P.
Eymery
,
Thin Solid Films
379
,
114
(
2000
).
22.
B. D.
Schultz
,
C.
Adelmann
,
X. Y.
Dong
,
S.
McKernan
, and
C. J.
Palmstrøm
,
Appl. Phys. Lett.
92
,
091914
(
2008
).
23.
A. T. M. K.
Jamil
,
H.
Noguchi
, and
H.
Munekata
,
Thin Solid Films
516
,
3015
(
2008
).
24.
A.
Paoletti
and
L.
Passari
,
Il Nuovo Cimento
32
,
25
(
1964
).
25.
N.
Kawamiya
,
K.
Adachi
, and
Y.
Nakamura
,
J. Phys. Soc. Jpn.
33
,
1318
(
1972
).
26.
A.
Sakai
,
S.
Minami
,
T.
Koretsune
,
T.
Chen
,
T.
Higo
,
Y.
Wang
,
T.
Nomoto
,
M.
Hirayama
,
S.
Miwa
,
D.
Nishio-Hamane
,
F.
Ishii
,
R.
Arita
, and
S.
Nakatsuji
,
Nature
581
,
53
(
2020
).
27.
D. D.
Kuznetsov
,
E. I.
Kuznetsova
,
A. V.
Mashirov
,
A. S.
Loshachenko
,
D. V.
Danilov
,
V. I.
Mitsiuk
,
A. S.
Kuznetsov
,
V. G.
Shavrov
,
V. V.
Koledov
, and
P.
Ari-Gur
,
Nanomaterials
13
,
1385
(
2023
).
28.
D. D.
Kuznetsov
,
E. I.
Kuznetsova
,
A. V.
Mashirov
,
A. S.
Loshachenko
,
D. V.
Danilov
,
G. A.
Shandryuk
,
V. G.
Shavrov
, and
V. V.
Koledov
,
Phys. Solid State
64
,
15
(
2022
).
29.
Z. H.
Liu
,
M.
Zhang
,
Y. T.
Cui
,
Y. Q.
Zhou
,
W. H.
Wang
,
G. H.
Wu
,
X. X.
Zhang
, and
G.
Xiao
,
Appl. Phys. Lett.
82
,
424
(
2003
).
30.
A.
Çakır
,
L.
Righi
,
F.
Albertini
,
M.
Acet
, and
M.
Farle
,
Acta Mater.
99
,
140
(
2015
).
31.
K.
Kanematsu
,
K.
Yasukōchi
, and
T.
Ohoyama
,
J. Phys. Soc. Jpn.
18
,
920
(
1963
).
32.
J. W.
Drijver
,
S. G.
Sinnema
, and
F.
Van Der Woude
,
J. Phys. F Met. Phys.
6
,
2165
(
1976
).
You do not currently have access to this content.