The increasing demand for functional nanodevices in sustainable energy applications necessitates the development of innovative approaches. In this study, we present the fabrication and characterization of three-dimensional (3D) structures coated with titanium dioxide (TiO 2) nanorods (NRs). These novel devices are created through the integration of four distinct techniques, multi-photon lithography, post-thermal treatment, pulsed laser deposition, and an aqueous chemical growth, enabling their unique properties and functionalities in photocatalysis. The photocatalytic performance of the 3D devices is evaluated through the degradation of organic pollutants, such as methylene blue and stearic acid, showcasing their efficiency in reducing pollutant concentrations. The devices demonstrate a remarkable decomposition coefficient ( k = 0.059 min 1), highlighting their enhanced photocatalytic efficiency. Additionally, we propose a rapid fabrication technique using 3D holographic printing to create large-area TiO 2-coated micro-structured photocatalytic devices at the mesoscale regime. This approach increases the active surface area, further enhancing the devices’ photocatalytic capabilities. By combining additive micro-manufacturing, TiO 2 NR coating, and holographic printing, our work introduces a promising avenue for the development of advanced nanodevices with superior photocatalytic performance in sustainable energy applications.

1.
Q.
Guo
,
C.
Zhou
,
Z.
Ma
, and
X.
Yang
, “
Fundamentals of TiO 2 photocatalysis: Concepts, mechanisms, and challenges
,”
Adv. Mater.
31
,
1901997
(
2019
).
2.
G.
Kenanakis
,
D.
Vernardou
, and
N.
Katsarakis
, “
Light-induced self-cleaning properties of ZnO nanowires grown at low temperatures
,”
Appl. Catal. A: Gen.
411–412
,
7
14
(
2012
).
3.
V.
Binas
,
D.
Venieri
,
D.
Kotzias
, and
G.
Kiriakidis
, “
Modified TiO 2 based photocatalysts for improved air and health quality
,”
J. Mater.
3
,
3
16
(
2017
).
4.
S. N.
Ahmed
and
W.
Haider
, “
Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review
,”
Nanotechnology
29
,
342001
(
2018
).
5.
J.
Lv
,
J.
Xie
,
A. G. A.
Mohamed
,
X.
Zhang
, and
Y.
Wang
, “
Photoelectrochemical energy storage materials: Design principles and functional devices towards direct solar to electrochemical energy storage
,”
Chem. Soc. Rev.
51
,
1511
1528
(
2022
).
6.
X.
Yan
,
Z.
Wang
,
M.
He
,
Z.
Hou
,
T.
Xia
,
G.
Liu
, and
X.
Chen
, “
Tio 2 nanomaterials as anode materials for lithium-ion rechargeable batteries
,”
Energy Technol.
3
,
801
814
(
2015
).
7.
K.
Juodkazis
,
J.
Juodkazytė
,
E.
Jelmakas
,
P.
Kalinauskas
,
I.
Valsiūnas
,
P.
Miečinskas
, and
S.
Juodkazis
, “
Photoelectrolysis of water: Solar hydrogen—Achievements and perspectives
,”
Opt. Express
18
,
A147
A160
(
2010
).
8.
A.
Wolcott
,
W. A.
Smith
,
T. R.
Kuykendall
,
Y.
Zhao
, and
J. Z.
Zhang
, “
Photoelectrochemical water splitting using dense and aligned TiO 2 nanorod arrays
,”
Small
5
,
104
111
(
2009
).
9.
A. O.
Ibhadon
and
P.
Fitzpatrick
, “
Heterogeneous photocatalysis: Recent advances and applications
,”
Catalysts
3
,
189
218
(
2013
).
10.
X.
Wang
,
Z.
Li
,
J.
Shi
, and
Y.
Yu
, “
One-dimensional titanium dioxide nanomaterials: Nanowires, nanorods, and nanobelts
,”
Chem. Rev.
114
,
9346
9384
(
2014
).
11.
I.
Paramasivam
,
H.
Jha
,
N.
Liu
, and
P.
Schmuki
, “
A review of photocatalysis using self-organized TiO 2 nanotubes and other ordered oxide nanostructures
,”
Small
8
,
3073
3103
(
2012
).
12.
X.
Chen
and
S. S.
Mao
, “
Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications
,”
Chem. Rev.
107
,
2891
2959
(
2007
).
13.
N.
Chaurasiya
,
U.
Kumar
,
S.
Sikarwar
,
B.
Yadav
, and
P. K.
Yadawa
, “
Synthesis of TiO 2 nanorods using wet chemical method and their photovoltaic and humidity sensing applications
,”
Sens. Int.
2
,
100095
(
2021
).
14.
H.
Sayahi
,
K.
Aghapoor
,
F.
Mohsenzadeh
,
M.
Mohebi Morad
, and
H. R.
Darabi
, “
TiO 2 nanorods integrated with titania nanoparticles: Large specific surface area 1D nanostructures for improved efficiency of dye-sensitized solar cells (DSSCS)
,”
Sol. Energy
215
,
311
320
(
2021
).
15.
A.
Prathan
,
J.
Sanglao
,
T.
Wang
,
C.
Bhoomanee
,
P.
Ruankham
,
A.
Gardchareon
, and
D.
Wongratanaphisan
, “
Controlled structure and growth mechanism behind hydrothermal growth of TiO 2 nanorods
,”
Sci. Rep.
10
,
8065
(
2020
).
16.
M.
Malinauskas
,
M.
Farsari
,
A.
Piskarskas
, and
S.
Juodkazis
, “
Ultrafast laser nanostructuring of photopolymers: A decade of advances
,”
Phys. Rep.
533
,
1
31
(
2013
).
17.
E.
Skliutas
,
D.
Samsonas
,
A.
Čiburys
,
L.
Kontenis
,
D.
Gailevičius
,
J.
Berzinš
,
D.
Narbutis
,
V.
Jukna
,
M.
Vengris
,
S.
Juodkazis
, and
M.
Malinauskas
, “
X-photon laser direct write 3D nanolithography
,”
Virtual Phys. Prototyp.
18
,
e2228324
(
2023
).
18.
M.
Manousidaki
,
D. G.
Papazoglou
,
M.
Farsari
, and
S.
Tzortzakis
, “
3D holographic light shaping for advanced multiphoton polymerization
,”
Opt. Lett.
45
,
85
88
(
2020
).
19.
A. N.
Giakoumaki
,
G.
Kenanakis
,
A.
Klini
,
M.
Androulidaki
,
Z.
Viskadourakis
,
M.
Farsari
, and
A.
Selimis
, “
3D micro-structured arrays of ZnO nanorods
,”
Sci. Rep.
7
,
2100
(
2017
).
20.
M.
Farsari
,
M.
Vamvakaki
, and
B. N.
Chichkov
, “
Multiphoton polymerization of hybrid materials
,”
J. Opt.
12
,
124001
(
2010
).
21.
A.
Klini
,
A.
Manousaki
,
D.
Anglos
, and
C.
Fotakis
, “
Growth of ZnO thin films by ultraviolet pulsed-laser ablation: Study of plume dynamics
,”
J. Appl. Phys.
98
,
123301
(
2005
).
22.
G.
Merkininkaite
,
E.
Aleksandravicius
,
M.
Malinauskas
,
D.
Gailevicius
, and
S.
Sakirzanovas
, “
Laser additive manufacturing of Si/ZrO 2 tunable crystalline phase 3D nanostructures
,”
Opto-Electron. Adv.
5
,
210077
(
2022
).
23.
G.
Balčas
,
M.
Malinauskas
,
M.
Farsari
, and
S.
Juodkazis
, “
Fabrication of glass-ceramic 3D micro-optics by combining laser lithography and calcination
,”
Adv. Funct. Mater.
33
,
2215230
(
2023
).
24.
G.
Flamourakis
,
I.
Spanos
,
Z.
Vangelatos
,
P.
Manganas
,
L.
Papadimitriou
,
C.
Grigoropoulos
,
A.
Ranella
, and
M.
Farsari
, “
Laser-made 3D auxetic metamaterial scaffolds for tissue engineering applications
,”
Macromol. Mater. Eng.
305
,
2000238
(
2020
).
25.
E.
Skliutas
,
M.
Lebedevaite
,
E.
Kabouraki
,
T.
Baldacchini
,
J.
Ostrauskaite
,
M.
Vamvakaki
,
M.
Farsari
,
S.
Juodkazis
, and
M.
Malinauskas
, “
Polymerization mechanisms initiated by spatio-temporally confined light
,”
Nanophotonics
10
,
1211
1242
(
2021
).
26.
M.
Walczak
,
E.
Papadopoulou
,
M.
Sanz
,
A.
Manousaki
,
J.
Marco
, and
M.
Castillejo
, “
Structural and morphological characterization of TiO 2 nanostructured films grown by nanosecond pulsed laser deposition
,”
Appl. Surf. Sci.
255
,
5267
5270
(
2009
).
27.
J.
Wu
,
S.
Lo
,
K.
Song
,
B. K.
Vijayan
,
W.
Li
,
K. A.
Gray
, and
V. P.
Dravid
, “
Growth of rutile TiO 2 nanorods on anatase TiO 2 thin films on Si-based substrates
,”
J. Mater. Res.
26
,
1646
1652
(
2011
).
28.
A.
Mills
and
J.
Wang
, “
Simultaneous monitoring of the destruction of stearic acid and generation of carbon dioxide by self-cleaning semiconductor photocatalytic films
,”
J. Photochem. Photobiol. A: Chem.
182
,
181
186
(
2006
).
29.
A.
Mills
,
S.-K.
Lee
,
A.
Lepre
,
I. P.
Parkin
, and
S. A.
O’Neill
, “
Spectral and photocatalytic characteristics of TiO 2 CVD films on quartz
,”
Photochem. Photobiol. Sci.
1
,
865
868
(
2002
).
30.
M. E.
Simonsen
,
H.
Jensen
,
Z.
Li
, and
E. G.
Søgaard
, “
Surface properties and photocatalytic activity of nanocrystalline titania films
,”
J. Photochem. Photobiol. A-Chem.
200
,
192
200
(
2008
).
31.
G.
Kenanakis
and
N.
Katsarakis
, “
Light-induced photocatalytic degradation of stearic acid by c-axis oriented ZnO nanowires
,”
Appl. Catal. A: Gen.
378
,
227
233
(
2010
).
32.
S.
Alofi
,
C.
O’Rourke
, and
A.
Mills
, “
Modelling the kinetics of stearic acid destruction on TiO 2 ‘self-cleaning’ photocatalytic films
,”
Appl. Catal. A: Gen.
647
,
118899
(
2022
).
33.
S.
Alofi
,
C.
O’Rourke
, and
A.
Mills
, “
Photocatalytic destruction of stearic acid by TiO 2 films: Evidence of highly efficient transport of photogenerated electrons and holes
,”
J. Photochem. Photobiol. A: Chem.
435
,
114273
(
2023
).
34.
A.
Butkus
,
E.
Skliutas
,
D.
Gailevičius
, and
M.
Malinauskas
, “
Femtosecond-laser direct writing 3D micro/nano-lithography using VIS-light oscillator
,”
J. Cent. South Univ.
29
,
3270
3276
(
2022
).
35.
A.
Houas
,
H.
Lachheb
,
M.
Ksibi
,
E.
Elaloui
,
C.
Guillard
, and
J.-M.
Herrmann
, “
Photocatalytic degradation pathway of methylene blue in water
,”
Appl. Catal. B: Envir.
31
,
145
157
(
2001
).
36.
Y.
Paz
,
Z.
Luo
,
L.
Rabenberg
, and
A.
Heller
, “
Photooxidative self-cleaning transparent titanium dioxide films on glass
,”
J. Mater. Res.
10
,
2842
2848
(
1995
).
You do not currently have access to this content.