In this paper, we investigated the properties of transition metal (TM)-doped α- G a 2 O 3 using first-principles calculations and Monte Carlo simulations. α- G a 2 O 3 is a wide-bandgap semiconductor material with enhanced performance and lower fabrication costs on sapphire substrates compared to β- G a 2 O 3. Doping with TMs can modify electrical transport, optical absorption, and magnetic properties, yet theoretical studies on this are scarce. Our study focused on V, Cr, Mn, and Fe impurities. We introduced a newly proposed scheme for efficiently determining the ground-state defect configuration during structural relaxation. We adopt a recent, novel image charge correction method to accurately calculate formation enthalpy and thermodynamic transition levels for spin-polarized transition metal ion doping, without employing the empirical dielectric constant. Results showed Cr ions tend to neutral substitutional Ga, while V, Mn, and Fe impurity ions tend to carry a negative charge in common n-type α- G a 2 O 3. Magnetic moments and spin-splitting impurity levels primarily arise from transition metal impurities and their d orbitals. We used the generalized four-state method to calculate exchange interaction constants between substitution lattice sites and identified (anti) ferromagnetic couplings at specific distances in a 120-atom supercell, which are negligible in total energy calculations. Monte Carlo simulations indicated a Curie temperature of 360 K in n-type α- G a 2 O 3: Mn system with 12.5% doping, suggesting intrinsic ferromagnetic ordering based on the Heisenberg model. Our study contributes to understanding TM-doped α- G a 2 O 3 electronic structure and magnetic properties through improved methodologies. The approach can be applied in research involving other TM-doped oxides or wide-bandgap semiconductors.

1.
E.
Chikoidze
,
T.
Tchelidze
,
C.
Sartel
,
Z.
Chi
,
R.
Kabouche
,
I.
Madaci
,
C.
Rubio
,
H.
Mohamed
,
V.
Sallet
,
F.
Medjdoub
,
A.
Perez-Tomas
, and
Y.
Dumont
, “
Ultra-high critical electric field of 13.2 MV/cm for Zn-doped p-type β- G a 2 O 3
,”
Mater. Today Phys.
15
,
100263
(
2020
).
2.
C.
Wang
,
J.
Zhang
,
S.
Xu
,
C.
Zhang
,
Q.
Feng
,
Y.
Zhang
,
J.
Ning
,
S.
Zhao
,
H.
Zhou
, and
Y.
Hao
, “
Progress in state-of-the-art technologies of G a 2 O 3 devices
,”
J. Phys. D: Appl. Phys.
54
,
243001
(
2021
).
3.
R.
Qiao
,
H.
Zhang
,
S.
Zhao
,
L.
Yuan
,
R.
Jia
,
B.
Peng
, and
Y.
Zhang
, “
A state-of-art review on gallium oxide field-effect transistors
,”
J. Phys. D: Appl. Phys.
55
,
383003
(
2022
).
4.
S.
Pearton
,
J.
Yang
,
P. H.
Cary
, IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of G a 2 O 3 materials, processing, and devices
,”
Appl. Phys. Rev.
5
,
011301
(
2018
).
5.
H.
Zhang
,
L.
Yuan
,
X.
Tang
,
J.
Hu
,
J.
Sun
,
Y.
Zhang
,
Y.
Zhang
, and
R.
Jia
, “
Progress of ultra-wide bandgap G a 2 O 3 semiconductor materials in power MOSFETs
,”
IEEE Trans. Power Electronics
35
,
5157
5179
(
2019
).
6.
S.
Kim
and
J.
Kim
, “
Highly selective ozone-treated β- G a 2 O 3 solar-blind deep-UV photodetectors
,”
Appl. Phys. Lett.
117
,
261101
(
2020
).
7.
X.
Hou
,
Y.
Zou
,
M.
Ding
,
Y.
Qin
,
Z.
Zhang
,
X.
Ma
,
P.
Tan
,
S.
Yu
,
X.
Zhou
,
X.
Zhao
et al., “
Review of polymorphous G a 2 O 3 materials and their solar-blind photodetector applications
,”
J. Phys. D: Appl. Phys.
54
,
043001
(
2020
).
8.
C.
Wu
,
F.
Wu
,
H.
Hu
,
S.
Wang
,
A.
Liu
, and
D.
Guo
, “
Review of self-powered solar-blind photodetectors based on G a 2 O 3
,”
Mater Today. Phys.
28
,
100883
(
2022
).
9.
M.
Razeghi
,
J.-H.
Park
,
R.
McClintock
,
D.
Pavlidis
,
F. H.
Teherani
,
D. J.
Rogers
,
B. A.
Magill
,
G. A.
Khodaparast
,
Y.
Xu
,
J.
Wu
et al., “
A review of the growth, doping, and applications of β- G a 2 O 3 thin films
,”
Oxide-Based Mater. Devices IX
10533
,
105330R
(
2018
).
10.
Y.
Oshima
and
E.
Ahmadi
, “
Progress and challenges in the development of ultra-wide bandgap semiconductor α- G a 2 O 3 toward realizing power device applications
,”
Appl. Phys. Lett.
121
,
260501
(
2022
).
11.
J.
Leach
,
K.
Udwary
,
J.
Rumsey
,
G.
Dodson
,
H.
Splawn
, and
K.
Evans
, “
Halide vapor phase epitaxial growth of β- G a 2 O 3 and α- G a 2 O 3 films
,”
APL Mater.
7
,
022504
(
2019
).
12.
K.
Akaiwa
,
K.
Ota
,
T.
Sekiyama
,
T.
Abe
,
T.
Shinohe
, and
K.
Ichino
, “
Electrical properties of Sn-doped α- G a 2 O 3 films on m-plane sapphire substrates grown by MIST chemical vapor deposition
,”
Phys. Stat. Sol. A
217
,
1900632
(
2020
).
13.
Y.
Cheng
,
Y.
Xu
,
Z.
Li
,
J.
Zhang
,
D.
Chen
,
Q.
Feng
,
S.
Xu
,
H.
Zhou
,
J.
Zhang
,
Y.
Hao
, and
C.
Zhang
, “
Heteroepitaxial growth of α- G a 2 O 3 thin films on a-, c-and r-plane sapphire substrates by low-cost MIST-CVD method
,”
J. Alloys Compd.
831
,
154776
(
2020
).
14.
D.
Yang
,
B.
Kim
,
T. H.
Eom
,
Y.
Park
, and
H. W.
Jang
, “
Epitaxial growth of alpha gallium oxide thin films on sapphire substrates for electronic and optoelectronic devices: Progress and perspective
,”
Electron. Mater. Lett.
18
,
113
128
(
2022
).
15.
J.
Moloney
,
O.
Tesh
,
M.
Singh
,
J.
Roberts
,
J.
Jarman
,
L.
Lee
,
T.
Huq
,
J.
Brister
,
S.
Karboyan
,
M.
Kuball
et al., “
Atomic layer deposited α- G a 2 O 3 solar-blind photodetectors
,”
J. Phys. D: Appl. Phys.
52
,
475101
(
2019
).
16.
S.-I.
Kan
,
S.
Takemoto
,
K.
Kaneko
,
I.
Takahashi
,
M.
Sugimoto
,
T.
Shinohe
, and
S.
Fujita
, “
Electrical properties of α- I r 2 O 3/ α- G a 2 O 3 pn heterojunction diode and band alignment of the heterostructure
,”
Appl. Phys. Lett.
113
,
212104
(
2018
).
17.
J.
Hao
,
H.
Gong
,
X.
Chen
,
Y.
Xu
,
F.-F.
Ren
,
S.
Gu
,
R.
Zhang
,
Y.
Zheng
, and
J.
Ye
, “
In situ heteroepitaxial construction and transport properties of lattice-matched α- I r 2 O 3/ α- G a 2 O 3 pn heterojunction
,”
Appl. Phys. Lett.
118
,
261601
(
2021
).
18.
Y. J.
Jeong
,
J.-H.
Park
,
M. J.
Yeom
,
I.
Kang
,
J. Y.
Yang
,
H.-Y.
Kim
,
D.-W.
Jeon
, and
G.
Yoo
, “
Heteroepitaxial α- G a 2 O 3 MOSFETs with a 2.3 kV breakdown voltage grown by halide vapor-phase epitaxy
,”
Appl. Phys. Express
15
,
074001
(
2022
).
19.
S.
Bhandari
and
M.
Zvanut
, “
Charge trapping at Fe due to midgap levels in G a 2 O 3
,”
J. Appl. Phys.
129
,
085703
(
2021
).
20.
D.
Guo
,
Z.
Wu
,
P.
Li
,
Q.
Wang
,
M.
Lei
,
L.
Li
, and
W.
Tang
, “
Magnetic anisotropy and deep ultraviolet photoresponse characteristics in G a 2 O 3: Cr vermicular nanowire thin film nanostructure
,”
RSC Adv.
5
,
12894
12898
(
2015
).
21.
M.
Back
,
J.
Ueda
,
H.
Nambu
,
M.
Fujita
,
A.
Yamamoto
,
H.
Yoshida
,
H.
Tanaka
,
M. G.
Brik
, and
S.
Tanabe
, “
Boltzmann thermometry in C r 3 +-doped G a 2 O 3 polymorphs: The structure matters!
,”
Adv. Opt. Mater.
9
,
2100033
(
2021
).
22.
M. M.
Afandi
,
J.
Kim
,
C.
Lee
, and
J.
Kim
, “
Anti-thermal quenching in phytochrome-active ac-driven electroluminescence from β-ga2o3: Cr3+ powder phosphor
,”
Phys. B
652
,
414644
(
2023
).
23.
D.
Guo
,
Z.
Wu
,
Y.
An
,
X.
Li
,
X.
Guo
,
X.
Chu
,
C.
Sun
,
M.
Lei
,
L.
Li
,
L.
Cao
,
P.
Li
, and
W.
Tang
, “
Room temperature ferromagnetism in ( G a 1 x M n x ) 2 O 3 epitaxial thin films
,”
J. Mater. Chem. C
3
,
1830
1834
(
2015
).
24.
B.
Peng
,
Y.
Zhang
,
Y.
Wang
,
L.
Yuan
,
L.
Dong
, and
R.
Jia
, “
Observation of room temperature ferromagnetism and exchange bias in a 55 M n + ion-implanted unintentionally doped β- G a 2 O 3 single crystal
,”
J. Magn. Magn. Mater.
506
,
166687
(
2020
).
25.
D.
Guo
,
Y.
An
,
W.
Cui
,
Y.
Zhi
,
X.
Zhao
,
M.
Lei
,
L.
Li
,
P.
Li
,
Z.
Wu
, and
W.
Tang
, “
Epitaxial growth and magnetic properties of ultraviolet transparent G a 2 O 3/ ( G a 1 x F e x ) 2 O 3 multilayer thin films
,”
Sci. Rep.
6
,
25166
(
2016
).
26.
X.
Wang
,
R.
Quhe
,
Y.
Zhi
,
Z.
Liu
,
Y.
Huang
,
X.
Dai
,
Y.
Tang
,
Z.
Wu
, and
W.
Tang
, “
The electronic structure and magnetic property of the Mn-doped β- G a 2 O 3
,”
Superlattices. Microstruct.
125
,
330
337
(
2019
).
27.
A. K.
Nayek
,
S.
Moshat
,
D.
Sanyal
, and
M.
Chakrabarti
, “
Magnetic properties of defect induced β- G a 2 O 3: A first principles study
,”
Comput. Condens. Matter
35
,
e00810
(
2023
).
28.
H.
Hayashi
,
R.
Huang
,
F.
Oba
,
T.
Hirayama
, and
I.
Tanaka
, “
Epitaxial growth of Mn-doped γ- G a 2 O 3 on spinel substrate
,”
J. Mater. Res.
26
,
578
583
(
2011
).
29.
Y.
Wang
,
J.
Su
,
H.
Yuan
,
Z.
Lin
,
J.
Zhang
,
Y.
Hao
, and
J.
Chang
, “
Impurity level properties in transition metal doped α- G a 2 O 3 for optoelectronic applications
,”
Semicond. Sci. Technol.
36
,
095026
(
2021
).
30.
I.
Mosquera-Lois
,
S. R.
Kavanagh
,
A.
Walsh
, and
D. O.
Scanlon
, “
Identifying the ground state structures of point defects in solids
,”
npj. Comput. Mater.
9
,
25
(
2023
).
31.
Z.
Suo
,
J.
Luo
,
S.
Li
, and
L.
Wang
, “
Image charge interaction correction in charged-defect calculations
,”
Phys. Rev. B
102
,
174110
(
2020
).
32.
G.
Pei
,
C.
Xia
,
Y.
Dong
,
B.
Wu
,
T.
Wang
, and
J.
Xu
, “
Studies of magnetic interactions in Mn-doped β- G a 2 O 3 from first-principles calculations
,”
Scr. Mater.
58
,
943
946
(
2008
).
33.
W.
Xiao
,
L.
Wang
,
L.
Xu
,
Q.
Wan
, and
B.
Zou
, “
Electronic structure and magnetic interactions in Ni-doped β- G a 2 O 3 from first-principles calculations
,”
Scr. Mater.
61
,
477
480
(
2009
).
34.
D.
Šabani
,
C.
Bacaksiz
, and
M.
Milošević
, “
Ab initio methodology for magnetic exchange parameters: Generic four-state energy mapping onto a Heisenberg spin Hamiltonian
,”
Phys. Rev. B
102
,
014457
(
2020
).
35.
H.
Xiang
,
C.
Lee
,
H.-J.
Koo
,
X.
Gong
, and
M.-H.
Whangbo
, “
Magnetic properties and energy-mapping analysis
,”
Dalton Trans.
42
,
823
853
(
2013
).
36.
H.
Xiang
,
E.
Kan
,
S.-H.
Wei
,
M.-H.
Whangbo
, and
X.
Gong
, “
Predicting the spin-lattice order of frustrated systems from first principles
,”
Phys. Rev. B
84
,
224429
(
2011
).
37.
C.
Freysoldt
,
B.
Grabowski
,
T.
Hickel
,
J.
Neugebauer
,
G.
Kresse
,
A.
Janotti
, and
C. G.
Van de Walle
, “
First-principles calculations for point defects in solids
,”
Rev. Mod. Phys.
86
,
253
(
2014
).
38.
D.
Hamann
, “
Optimized norm-conserving Vanderbilt pseudopotentials
,”
Phys. Rev. B
88
,
085117
(
2013
).
39.
W.
Jia
,
J.
Fu
,
Z.
Cao
,
L.
Wang
,
X.
Chi
,
W.
Gao
, and
L.-W.
Wang
, “
Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines
,”
J. Comput. Phys.
251
,
102
115
(
2013
).
40.
O.
Eriksson
,
A.
Bergman
,
L.
Bergqvist
, and
J.
Hellsvik
,
Atomistic Spin Dynamics: Foundations and Applications
(
Oxford University Press
,
2017
).
41.
See https://materialsproject.org/materials/mp-1243?chemsys=Ga-O#summary for information regarding the calculated lattice constant of the primitive unit cell.
42.
J.
Furthmüller
and
F.
Bechstedt
, “
Quasiparticle bands and spectra of G a 2 O 3 polymorphs
,”
Phys. Rev. B
93
,
115204
(
2016
).
43.
W.
Zachariasen
, “
Untersuchungen über die Kristallstruktur von Sesquioxyden und Verbindungen AB O 3
,”
Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo
1
,
1
165
(
1928
).
44.
K. E.
Lipinska-Kalita
,
P. E.
Kalita
,
O. A.
Hemmers
, and
T.
Hartmann
, “
Equation of state of gallium oxide to 70 GPa: Comparison of quasihydrostatic and nonhydrostatic compression
,”
Phys. Rev. B
77
,
094123
(
2008
).
45.
F. D.
Murnaghan
, “
The compressibility of media under extreme pressures
,”
Proc. Natl. Acad. Sci. U.S.A.
30
,
244
247
(
1944
).
46.
Y.
Pan
, “
First-principles investigation of the influence of point defect on the electronic and optical properties of α- G a 2 O 3
,”
Int. J. Energy Res.
46
(9),
13070
–13078 (
2022
).
47.
W.
Setyawan
and
S.
Curtarolo
, “
High-throughput electronic band structure calculations: Challenges and tools
,”
Comput. Mater. Sci.
49
,
299
312
(
2010
).
48.
J. E.
Medvedeva
and
C. L.
Hettiarachchi
, “
Tuning the properties of complex transparent conducting oxides: Role of crystal symmetry, chemical composition, and carrier generation
,”
Phys. Rev. B
81
,
125116
(
2010
).
49.
A.
Segura
,
L.
Artús
,
R.
Cuscó
,
R.
Goldhahn
, and
M.
Feneberg
, “
Band gap of corundumlike α- G a 2 O 3 determined by absorption and ellipsometry
,”
Phys. Rev. Mater.
1
,
024604
(
2017
).
50.
L.
Dong
,
J.
Yu
,
Y.
Zhang
, and
R.
Jia
, “
Elements ( Si, Sn, and Mg) doped α- G a 2 O 3: First-principles investigations and predictions
,”
Comput. Mater. Sci.
156
,
273
279
(
2019
).
51.
H.
He
,
R.
Orlando
,
M. A.
Blanco
,
R.
Pandey
,
E.
Amzallag
,
I.
Baraille
, and
M.
Rérat
, “
First-principles study of the structural, electronic, and optical properties of G a 2 O 3 in its monoclinic and hexagonal phases
,”
Phys. Rev. B
74
,
195123
(
2006
).
52.
M.
Marezio
and
J.
Remeika
, “
Bond lengths in the α- G a 2 O 3 structure and the high-pressure phase of G a 2 x F e x O 3
,”
J. Chem. Phys.
46
,
1862
1865
(
1967
).
53.
See https://shakenbreak.readthedocs.io/en/latest/ for instructions on generating different supercell configurations.
54.
J. B.
Varley
, “First-principles calculations 2: Doping and defects in G a 2 O 3,” in Gallium Oxide: Materials Properties, Crystal Growth, and Devices (Springer, 2020), pp. 329–348.
55.
M.
Ingebrigtsen
,
A. Y.
Kuznetsov
,
B.
Svensson
,
G.
Alfieri
,
A.
Mihaila
, and
U.
Badstübner
, “
A. perron, l. vines, and jb varley
,”
APL Mater
7
,
022510
(
2019
).
56.
F. L.
Hirshfeld
, “
Bonded-atom fragments for describing molecular charge densities
,”
Theor. Chim. Acta
44
,
129
138
(
1977
).
57.
See http://www.pwmat.com for a comprehensive introduction to the Hirshfield algorithm in the PWmat code.
58.
B.
Chakraborty
,
P. K.
Nandi
,
Y.
Kawazoe
, and
L. M.
Ramaniah
, “
Room-temperature d 0 ferromagnetism in carbon-doped Y 2 O 3 for spintronic applications: A density functional theory study
,”
Phys. Rev. B
97
,
184411
(
2018
).
59.
J.
Xiao
,
K.
Yang
,
D.
Guo
,
T.
Shen
,
H.-X.
Deng
,
S.-S.
Li
,
J.-W.
Luo
, and
S.-H.
Wei
, “
Realistic dimension-independent approach for charged-defect calculations in semiconductors
,”
Phys. Rev. B
101
,
165306
(
2020
).

Supplementary Material

You do not currently have access to this content.