The scanning electron microscope (SEM) recordings of dynamic nano-electromechanical systems (NEMS) are difficult to analyze due to the noise caused by low frame rate, insufficient resolution, and blurriness induced by applied electric potentials. Here, we develop an image processing platform enhanced by the physics of the underlying system to track the motion of buckling NEMS structures in the presence of high noise levels. The algorithm is composed of an image filter, two data filters, and a nonlinear regression model, which utilizes the expected form of the physical solution. The method was applied to the recordings of a NEMS beam about 150 nm wide, undergoing intra- and inter-well post-buckling states with a transition rate of approximately 0.5 Hz. The algorithm can track the dynamical motion of the NEMS and capture the dependency of deflection amplitude on the compressive force on the beam. With the help of the proposed algorithm, the transition from inter-well to intra-well motion is clearly resolved for buckling NEMS imaged under SEM.

1.
S.
Dominguez
,
S.
Fostner
,
M.
Defoort
,
M.
Sansa
,
A.-K.
Stark
,
M.
Halim
,
E.
Vernhes
,
M.
Gely
,
G.
Jourdan
,
T.
Alava
,
P.
Boulanger
,
C.
Masselon
, and
S.
Hentz
, “
Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators
,”
Science
362
,
918
922
(
2018
).
2.
M.
Matheny
,
J.
Emenheiser
,
W.
Fon
,
A.
Chapman
,
A.
Salova
,
M.
Rohden
,
J.
Li
,
M.
Hudoba de Badyn
,
M.
Pósfai
,
L.
Dueñas-Osorio
,
M.
Mesbahi
,
J.
Crutchfield
,
M.
Cross
,
R.
D’Souza
, and
M.
Roukes
, “
Exotic states in a simple network of nanoelectromechanical oscillators
,”
Science
363
,
eaav7932
(
2019
).
3.
E.
Gil-Santos
,
J.
Ruz
,
O.
Malvar
,
I.
Favero
,
A.
Lemaître
,
P.
Kosaka
,
S.
Garcpez
,
M.
Calleja
, and
J.
Tamayo
, “
Optomechanical detection of vibration modes of a single bacterium
,”
Nat. Nanotechnol.
15
,
469
(
2020
).
4.
R. T.
Erdogan
,
M.
Alkhaled
,
B. E.
Kaynak
,
H.
Alhmoud
,
H. S.
Pisheh
,
M.
Kelleci
,
I.
Karakurt
,
C.
Yanik
,
Z. B.
Şen
,
B.
Sari
,
A. M.
Yagci
,
A.
Özkul
, and
M. S.
Hanay
, “
Atmospheric pressure mass spectrometry of single viruses and nanoparticles by nanoelectromechanical systems
,”
ACS Nano
16
,
3821
3833
(
2022
), pMID: 35785967.
5.
I. E.
Rosłoń
,
A.
Japaridze
,
P. G.
Steeneken
,
C.
Dekker
, and
F.
Alijani
, “
Probing nanomotion of single bacteria with graphene drums
,”
Nat. Nanotechnol.
17
,
637
642
(
2022
).
6.
S. O.
Erbil
,
U.
Hatipoglu
,
C.
Yanik
,
M.
Ghavami
,
A. B.
Ari
,
M.
Yuksel
, and
M. S.
Hanay
, “
Full electrostatic control of nanomechanical buckling
,”
Phys. Rev. Lett.
124
,
046101
(
2020
).
7.
A. T.
Liem
,
A. B.
Ari
,
J. G.
McDaniel
, and
K. L.
Ekinci
, “
An inverse method to predict NEMS beam properties from natural frequencies
,”
J. Appl. Mech.
87
,
061002
(
2020
).
8.
T.
Jin
,
C. G.
Baker
,
E.
Romero
,
N. P.
Mauranyapin
,
T. M. F.
Hirsch
,
W. P.
Bowen
, and
G. I.
Harris
, “
Cascading of nanomechanical resonator logic
,”
Int. J. Unconvent. Comput.
18
,
49
66
(
2023
).
9.
D.
Horacio
and
C.
Ke
, “Nanoelectromechanical systems—Experiments and modeling,” in
Encyclopedia of Materials: Science and Technology
(Springer, 2007).
10.
C.
Samanta
,
S. L. D.
Bonis
,
C. B.
Møller
,
R.
Tormo-Queralt
,
W.
Yang
,
C.
Urgell
,
B.
Stamenic
,
B.
Thibeault
,
Y.
Jin
,
D. A.
Czaplewski
,
F.
Pistolesi
, and
A.
Bachtold
, “
Nonlinear nanomechanical resonators approaching the quantum ground state
,”
Nat. Phys.
19
,
1340
(
2023
).
11.
C.
Samanta
,
P.
Gangavarapu
, and
A.
Naik
, “
Nonlinear mode coupling and internal resonances in MoS 2 nanoelectromechanical system
,”
Appl. Phys. Lett.
107
,
173110
(
2015
).
12.
H.
Xu
,
U.
Kemiktarak
,
J.
Fan
,
S.
Ragole
,
J.
Lawall
, and
J.
Taylor
, “
Observation of optomechanical buckling phase transitions
,”
Nat. Commun.
8
,
14481
(
2015
).
13.
Y.
Xie
,
J.
Lee
,
Y.
Wang
, and
P.
Feng
, “
Straining and tuning atomic layer nanoelectromechanical resonators via comb-drive mems actuators
,”
Adv. Mater. Technol.
6
,
2000794
(
2020
).
14.
A.
Keşkekler
,
O.
Shoshani
,
M.
Lee
,
H.
Zant
,
P.
Steeneken
, and
F.
Alijani
, “
Tuning nonlinear damping in graphene nanoresonators by parametric–direct internal resonance
,”
Nat. Commun.
12
,
1099
(
2021
).
15.
R.
Lifshitz
and
M. C.
Cross
, “Nonlinear dynamics of nanomechanical and micromechanical resonators,” in Reviews of Nonlinear Dynamics and Complexity (Wiley-VCH Verlag GmbH & Co. KGaA, 2008), pp. 1–52.
16.
M.
Gomez
,
D. E.
Moulton
, and
D.
Vella
, “
Critical slowing down in purely elastic ‘snap-through’ instabilities
,”
Nat. Phys.
13
,
142
145
(
2016
).
17.
Y.
Wang
,
Q.
Wang
,
M.
Liu
,
Y.
Qin
,
L.
Cheng
,
O.
Bolmin
,
M.
Alleyne
,
A.
Wissa
,
R. H.
Baughman
,
D.
Vella
, and
S.
Tawfick
, “
Insect-scale jumping robots enabled by a dynamic buckling cascade
,”
Proc. Natl. Acad. Sci. U.S.A.
120
,
e2210651120
(
2023
).
18.
B.
Demiralp
,
H. S.
Pisheh
,
B.
Kucukoglu
,
U.
Hatipoglu
, and
M. S.
Hanay
, “Monitoring micromechanical buckling at high-speed for sensing and transducer applications,” in 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) (IEEE, 2021), pp. 627–630.
19.
G.
Weick
,
F.
von Oppen
, and
F.
Pistolesi
, “
Euler buckling instability and enhanced current blockade in suspended single-electron transistors
,”
Phys. Rev. B
83
,
035420
(
2011
).
20.
S.
An
,
B.
Kim
,
S.
Kwon
,
G.
Moon
,
M.
Lee
, and
W.
Jhe
, “
Bifurcation-enhanced ultrahigh sensitivity of a buckled cantilever
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
2884
2889
(
2018
).
21.
R. R. A.
Syms
,
A.
Bouchaala
,
O.
Sydoruk
, and
D.
Liu
, “
Optical imaging and image analysis for high aspect ratio nems
,”
J. Micromech. Microeng.
29
,
015003
(
2018
).
22.
E.
Ortega
,
D.
Nicholls
,
N. D.
Browning
, and
N.
de Jonge
, “
High temporal-resolution scanning transmission electron microscopy using sparse-serpentine scan pathways
,”
Sci. Rep.
11
,
22722
(
2021
).
23.
F.
Merchant
and
K.
Castleman
,
Microscope Image Processing
(
Elsevier Science
,
2022
), pp.
403
404
.
24.
C. F.
Ockeloen
,
A. F.
Tauschinsky
,
R. J. C.
Spreeuw
, and
S.
Whitlock
, “
Detection of small atom numbers through image processing
,”
Phys. Rev. A
82
,
061606(R)
(
2010
).
25.
F.
Joucken
,
J. L.
Davenport
,
Z.
Ge
,
E. A.
Quezada-Lopez
,
T.
Taniguchi
,
K.
Watanabe
,
J.
Velasco
,
J.
Lagoute
, and
R. A.
Kaindl
, “
Denoising scanning tunneling microscopy images of graphene with supervised machine learning
,”
Phys. Rev. Mater.
6
,
123802
(
2022
).
26.
N.
Ouarti
,
B.
Sauvet
, and
S.
Régnier
, “
High quality real-time video with scanning electron microscope using total variation algorithm on a graphics processing unit
,”
Int. J. Optomechatron.
6
,
163
178
(
2012
).
27.
N.
Ofir
,
M.
Galun
,
S.
Alpert
,
A.
Brandt
,
B.
Nadler
, and
R.
Basri
, “
On detection of faint edges in noisy images
,”
IEEE Trans. Pattern Analysis Machine Intell.
42
,
894
908
(
2020
).
28.
S.
Suzuki
and
K.
be
, “
Topological structural analysis of digitized binary images by border following
,”
Comput. Vision Graph. Image Process.
30
,
32
46
(
1985
).
29.
S. C.
Chapra
and
R. P.
Canale
,
Numerical Methods for Engineers
, 7th ed. (
McGraw-Hill Professional
,
New York
,
2014
).

Supplementary Material

You do not currently have access to this content.