Phonons confined in mechanical resonators can be coupled to a variety of quantum systems and are expected to be applied to hybrid quantum systems. Diamond surface acoustic wave (SAW) devices are capable of high efficiency in phonon interaction with color centers in diamond. The temperature dependence of the quality factor is crucial for inferring the governing mechanism of coupling efficiency between phonons and color centers in diamond. In this paper, we report on the temperature dependence of the quality factor of an AlN/diamond SAW device from room temperature to 5 K. The temperature dependence of the quality factor and resonant frequency suggests that the mechanism of SAW dissipation in the AlN/diamond SAW resonator at 5 GHz is the phonon–phonon scattering in the Akheiser regime and that further cooling can be expected to improve the quality factor. This result provides a crucial guideline for the future design of AlN/diamond SAW devices.

1.
A.
Bienfait
,
K. J.
Satzinger
,
Y. P.
Zhong
,
H.-S.
Chang
,
M.-H.
Chou
,
C. R.
Conner
,
É
Dumur
,
J.
Grebel
,
G. A.
Peairs
,
R. G.
Povey
, and
A. N.
Cleland
, “
Phonon-mediated quantum state transfer and remote qubit entanglement
,”
Science
364
,
368
371
, (
2019
).
2.
M.
Mirhosseini
,
A.
Sipahigil
,
M.
Kalaee
, and
O.
Painter
, “
Superconducting qubit to optical photon transduction
,”
Nature
588
,
599
603
(
2020
).
3.
R. A.
DeCrescent
,
Z.
Wang
,
P.
Imany
,
R. C.
Boutelle
,
C. A.
McDonald
,
T.
Autry
,
J. D.
Teufel
,
S. W.
Nam
,
R. P.
Mirin
, and
K. L.
Silverman
, “
Large single-phonon optomechanical coupling between quantum dots and tightly confined surface acoustic waves in the quantum regime
,”
Phys. Rev. Appl.
18
,
034067
(
2022
).
4.
S.
Maity
,
L.
Shao
,
S.
Bogdanović
,
S.
Meesala
,
Y.-I.
Sohn
,
N.
Sinclair
,
B.
Pingault
,
M.
Chalupnik
,
C.
Chia
,
L.
Zheng
,
K.
Lai
, and
M.
Lončar
, “
Coherent acoustic control of a single silicon vacancy spin in diamond
,”
Nat. Commun.
11
,
193
(
2020
).
5.
S. J.
Whiteley
,
G.
Wolfowicz
,
C. P.
Anderson
,
A.
Bourassa
,
H.
Ma
,
M.
Ye
,
G.
Koolstra
,
K. J.
Satzinger
,
M. V.
Holt
,
F. J.
Heremans
,
A. N.
Cleland
,
D. I.
Schuster
,
G.
Galli
, and
D. D.
Awschalom
, “
Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics
,”
Nat. Phys.
15
,
490
495
(
2019
).
6.
H.
Kurokawa
,
M.
Yamamoto
,
Y.
Sekiguchi
, and
H.
Kosaka
, “
Remote entanglement of superconducting qubits via solid-state spin quantum memories
,”
Phys. Rev. Appl.
18
,
064039
(
2022
).
7.
T.
Neuman
,
M.
Eichenfield
,
M. E.
Trusheim
,
L.
Hackett
,
P.
Narang
, and
D.
Englund
, “
A phononic interface between a superconducting quantum processor and quantum networked spin memories
,”
npj Quantum Inf.
7
,
121
(
2021
).
8.
S.
Maity
,
B.
Pingault
,
G.
Joe
,
M.
Chalupnik
,
D.
Assumpção
,
E.
Cornell
,
L.
Shao
, and
M.
Lončar
, “
Mechanical control of a single nuclear spin
,”
Phys. Rev. X
12
,
011056
(
2022
).
9.
A.
Barfuss
,
J.
Teissier
,
E.
Neu
,
A.
Nunnenkamp
, and
P.
Maletinsky
, “
Strong mechanical driving of a single electron spin
,”
Nat. Phys.
11
,
820
824
(
2015
).
10.
K. W.
Lee
,
D.
Lee
,
P.
Ovartchaiyapong
,
J.
Minguzzi
,
J. R.
Maze
, and
A. C. B.
Jayich
, “
Strain coupling of a mechanical resonator to a single quantum emitter in diamond
,”
Phys. Rev. Appl.
6
,
034005
(
2016
).
11.
J.
Teissier
,
A.
Barfuss
,
P.
Appel
,
E.
Neu
, and
P.
Maletinsky
, “
Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator
,”
Phys. Rev. Lett.
113
,
020503
(
2014
).
12.
H. Y.
Chen
,
S. A.
Bhave
, and
G. D.
Fuchs
, “
Acoustically driving the single-quantum spin transition of diamond nitrogen-vacancy centers
,”
Phys. Rev. Appl.
13
,
054068
(
2020
).
13.
D. A.
Golter
,
T.
Oo
,
M.
Amezcua
,
K. A.
Stewart
, and
H.
Wang
, “
Optomechanical quantum control of a nitrogen-vacancy center in diamond
,”
Phys. Rev. Lett.
116
,
143602
(
2016
).
14.
A.
Müller
,
I.
Giangu
,
A.
Stavrinidis
,
A.
Stefanescu
,
G.
Stavrinidis
,
A.
Dinescu
, and
G.
Konstantinidis
, “
Sezawa propagation mode in GaN on Si surface acoustic wave type temperature sensor structures operating at GHz frequencies
,”
IEEE Electron Device Lett.
36
,
1299
1302
(
2015
).
15.
J.
Zhou
,
D.
Zhang
,
Y.
Liu
,
F.
Zhuo
,
L.
Qian
,
H.
Li
,
Y.-Q.
Fu
, and
H.
Duan
, “
Record-breaking frequency of 44 GHz based on the higher order mode of surface acoustic waves with LiNbO3/SiO2/SiC heterostructures
,”
Engineering
20
,
112
119
(
2023
).
16.
S.
Fujii
,
T.
Odawara
,
H.
Yamada
,
T.
Omori
,
K.
Hashimoto
,
H.
Torii
,
H.
Umezawa
, and
S.
Shikata
, “
Low propagation loss in a one-port SAW resonator fabricated on single-crystal diamond for super-high-frequency applications
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
60
,
986
992
(
2013
).
17.
Z.
Hao
et al, in
IEEE/MTT-S International Microwave Symposium
(IEEE,
2019
), pp.
786
789
.
18.
R.
Tabrizian
,
M.
Rais-Zadeh
, and
F.
Ayazi
, in
TRANSDUCERS 2009-15th International Conference on Solid-State Sensors, Actuators and Microsystems
,
Denver
(
Institute of Electrical and Electronics Engineers
,
2009
), pp.
2131
2134
.
19.
J.
Zou
and
A.
Balandin
, “
Phonon heat conduction in a semiconductor nanowire
,”
J. Appl. Phys.
89
,
2932
2938
(
2001
).
20.
J. Q.
Fu
,
T. L.
Song
,
X. X.
Liang
, and
G. J.
Zhao
,
J. Phys. Conf. Ser.
(
Institute of Physics
,
Madrid
,
2014
).
21.
K. S.
Pitzer
, “
The heat capacity of diamond from 70 to 300°K
,”
J. Chem. Phys.
6
,
68
70
(
1938
).
22.
B. P.
Sorokin
,
G. M.
Kvashnin
,
A. S.
Novsoselov
, and
A. B.
Shipilov
,
2018 European Frequency and Time Forum, EFTF 2018
(
Institute of Electrical and Electronics Engineers
,
Torino
,
2018
), pp.
1
5
.
23.
S.
Barman
and
G. P.
Srivastava
, “
Temperature dependence of the thermal conductivity of different forms of diamond
,”
J. Appl. Phys.
101
,
123507
(
2007
).
24.
L.-C.
Xu
,
R.-Z.
Wang
,
X.
Yang
, and
H.
Yan
, “
Thermal expansions in wurtzite AlN, GaN, and InN: First-principle phonon calculations
,”
J. Appl. Phys.
110
,
043528
(
2011
).
25.
R. J.
Bruls
,
H. T.
Hintzen
,
G.
de With
,
R.
Metselaar
, and
J. C.
van Miltenburg
, “
The temperature dependence of the Grüneisen parameters of MgSiN2, AlN and β-Si3N4
,”
J. Phys. Chem. Solids
62
,
783
792
(
2001
).
You do not currently have access to this content.