Due to their potential applications in energy production based on waste heat, direct solar radiation or other energy sources, semiconductor materials have for years attracted the attention of theoretical and experimental researchers. The focus has been on improving the performance of thermoelectric devices through several strategies and special interest has been placed on materials with spatially inhomogeneous transport properties. Inhomogeneity can be achieved in various ways, all of them leading, to a greater or lesser extent, to an improvement of the thermoelectric performance. In this paper, general linear heat and electric charge transport processes in inhomogeneous materials are addressed. The guiding idea followed here is that there exists a relationship between inhomogeneity (structuring), minimum entropy production and performance which may be fruitfully exploited for designing more efficient thermoelectric semiconductor devices. We first show that the stationary states of such materials are minimum global entropy production states. This constitutes an extension of the validity of Prigogine’s minimum entropy principle. The heat and charge transport equations obtained within the framework of classical irreversible thermodynamics are solved to find the stationary profiles of temperature and self-consistent electric potential in a one-dimensional model of a silicon–germanium alloy subjected to an external temperature difference. This allows us to assess the effect of the spatial inhomogeneity on the thermoelectric performance. We find that, regardless of the value of the applied temperature difference, the system may efficiently operate in a regime of minimum entropy production and high efficiency.

1.
T. J.
Seebeck
, “Magnetische polarisation der metalle und erze durch temperatur-differenz,” in Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin (Wilhelm Engelmann, 1822), pp. 265–373.
2.
J.
Peltier
, “
Nouvelles expériences sur la caloricité des courants électriques
,”
Ann. Chim. Phys.
56
,
371
386
(
1834
).
3.
W.
Thomson
, “
On the dynamical theory of heat: With numerical results deduced from Mr. Joule’s equivalent of a thermal unit and M. Regnault’s observations on steam
,”
Math. Phys.
1
,
175
183
(
1851
).
4.
L.
Onsager
, “
Reciprocal relations in irreversible processes. I
,”
Phys. Rev.
37
,
405
(
1931
).
5.
C.
Goupil
,
H.
Ouerdane
,
K.
Zabrocki
,
W.
Seifert
,
N. F.
Hinsche
, and
E.
Muller
, “
Thermodynamics of thermoelectric phenomena and applications
,”
Entropy
13
,
1481
1517
(
2011
).
6.
H. J.
Goldsmid
,
Introduction to Thermoelectricity
(
Springer
,
2016
).
7.
B.
Hu
,
X.
Shi
,
J.
Zou
, and
Z.
Chen
, “
Thermoelectrics for medical applications: Progress, challenges, and perspectives
,”
Chem. Eng. J.
437
,
135268
(
2022
).
8.
K.
Koumoto
and
T.
Mori
,
Thermoelectric Nanomaterials
(
Springer
,
2013
).
9.
L.
Tao
,
L.
Liya
,
H.
Fengqin
,
Z.
Yao
, and
Z.
Jicheng
, “Performance investigation of the new thermoelectric dehumidifier based on prefabricated cabin substation,” SSRN, pp. 1–16 (2022).
10.
S.
Gonzalez-Hernandez
,
M.
Ramirez-Moreno
, and
G. A.
de Parga
, “
Unification criteria of optimization and energetic analysis of a thermoelectric-generator
,”
Physica A
626
,
1
13
(
2023
).
11.
A.
Feldhoff
, “
Power conversion and its efficiency in thermoelectric materials
,”
Entropy
22
,
2
40
(
2020
).
12.
C.
LinGen
,
M.
FanKai
, and
S.
FengRui
, “
Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts
,”
Sci. China Tech. Sci.
59
,
442
455
(
2016
).
13.
V.
Cimmelli
and
P.
Rogolino
, “
New and recent results for thermoelectric energy conversion in graded alloys at nanoscale
,”
Nanomaterials
12
,
1
13
(
2022
).
14.
S.
Shafeie
,
S.
Guo
,
Q.
Hu
,
H.
Fahlquist
,
P.
Erhart
, and
A.
Palmqvist
, “
High-entropy alloys as high-temperature thermoelectric materials
,”
J. Appl. Phys.
118
,
1
11
(
2015
).
15.
C.
Goupil
,
Simulation with Entropy Thermodynamics
(
MDPI
,
2021
).
16.
I.
Prigogine
,
Etude Thermodynamique des Phénomènes Irreversibles
(
Dunod
,
Paris
,
1947
).
17.
F.
Zullo
, “
Entropy production in the theory of heat conduction in solids
,”
Entropy
18
,
2
12
(
2016
).
18.
Z.
Kolenda
,
J.
Donizak
, and
J.
Hubert
, “
On the minimum entropy production in steady state heat
,”
Energy
29
,
2441
2460
(
2004
).
19.
H. B.
Callen
, “
Principle of minimum entropy production
,”
Phys. Rev.
105
,
360
365
(
1957
).
20.
S.
de Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
Dover Publications
,
1962
).
21.
E.
Jaynes
, “
The minimum entropy production principle
,”
Annu. Rev. Phys. Chem.
31
,
579
601
(
1980
).
22.
I.
Gyarmati
,
Non-Equilibrium Thermodynamics: Field Theory and Variational Principles
(
Springer
,
1970
).
23.
M. J.
Lampinen
, “
Short communication: A problem of the principle of minimum entropy production
,”
J. Non-Equilib. Thermodyn.
15
,
397
402
(
1990
).
24.
W. G.
Hoover
, “
Note on ‘Comment on “A check of Prigogine’s theorem of minimum entropy production in a rod in a nonequilibrium stationary state,” by Irena Danielewicz-Ferchmin and A. Ryszard Ferchmin’
,”
Am. J. Phys.
70
,
452
454
(
2001
).
25.
P.
Palffy-Muhoray
, “
Comment on ‘A check of Prigogine’s theorem of minimum entropy production in a rod in a nonequilibrium stationary state’ by Irena Danielewicz-Ferchmin and A. Ryszard Ferchmin
,”
Am. J. Phys.
69
,
825
826
(
2001
).
26.
V.
Bertola
and
E.
Cafaro
, “
A critical analysis of the minimum entropy production theorem and its application to heat and fluid flow
,”
Int. J. Heat Mass Transf.
51
,
1907
1912
(
2008
).
27.
E.
Kiss
, “
On the validity of the principle of minimum entropy production
,”
Period. Polytech. Ser. Chem. Eng.
38
,
183
197
(
1994
).
28.
R. E.
Gonzalez-Narvaez
,
F.
Vázquez
, and
M. L.
de Haro
, “
Validity of Prigogine’ s minimum entropy production principle for a rigid heat-conducting solid beyond the Fourier heat transport regime
,”
Contin. Mech. Thermodyn.
34
,
1553
1561
(
2022
).
29.
Y.
Cai
,
W.
Wang
,
W.
Ding
,
G.
Yang
,
D.
Liu
, and
F.
Zhao
, “
Entropy generation minimization of thermoelectric systems applied for electronic cooling: Parametric investigations and operation optimization
,”
Energy Convers. Manage.
186
,
401
414
(
2019
).
30.
S.
Wongprakarn
,
S.
Pinitsoontorn
,
S.
Tanusilp
, and
K.
Kurosaki
, “
Enhancing thermoelectric properties of p-type SiGe alloy through optimization of carrier concentration and processing parameters
,”
Mater. Sci. Semicond.
88
,
239
249
(
2018
).
31.
A. A.
Snarskii
,
I. V.
Bezsudnov
,
V. A.
Sevryukov
,
A.
Morozovskiy
, and
J.
Malinskyzx
,
Transport Processes in Macroscopically Disordered Media
(
Springer
,
2016
).
32.
V.
Zlatić
and
R.
Monnier
,
Modern Theory of Thermoelectricity
(
Oxford University Press
,
2014
).
33.
S.
Selberherr
,
Analysis and Simulation of Semiconductor Devices
(
Springer-Verlag
,
1984
).
34.
I.
Prigogine
, “
Time, structure, and fluctuations
,”
Science
201
,
777
785
(
1978
).
35.
P.
Rogolino
and
V. A.
Cimmelli
, “
Thermal conductivity and enhanced thermoelectric efficiency of composition-graded Si cGe 1 c alloys
,”
Z. Angew. Math. Phys.
71
,
92
(
2020
).
36.
M.
Miyao
,
H.
Kanno
, and
T.
Sadoh
, “
Recent progress of SiGe heterostructure technologies for novel device
,”
ECS Trans.
2
,
65
179
(
2006
).
37.
M. L.
Ciurea
,
I.
Stavarache
,
A. M.
Lepadatu
,
I.
Pasuk
, and
V. S.
Teodorescu
, “
Electrical properties related to the structure of GeSi nanostructured films
,”
Phys. Status Solidi B
251
,
1340
1346
(
2014
).
38.
T.
Hori
and
J.
Shiomi
, “
Tuning phonon transport spectrum for better thermoelectric materials
,”
Sci. Technol. Adv. Mater.
20
,
10
25
(
2018
).
39.
T.
Zhu
,
Y.
Liu
,
C.
Fu
,
J. P.
Heremans
,
J. G.
Snyder
, and
X.
Zhao
, “
Compromise and synergy in high-efficiency thermoelectric materials
,”
Adv. Mater
29
,
12
(
2017
).
40.
Y.
Wu
,
P.
Nan
,
Z.
Chen
,
Z.
Zeng
,
S.
Lin
,
X.
Zhang
,
H.
Dong
,
Z.
Chen
,
H.
Gu
,
W.
Li
,
Y.
Chen
,
B.
Ge
, and
Y.
Pei
, “
Manipulation of band degeneracy and lattice strain for extraordinary PbTe thermoelectrics
,”
SPJ
2020
,
12
(
2020
).
41.
V. A.
Cimmelli
and
P.
Rogolino
, “
Approximation of composition and temperature dependent heat conductivity and optimization of thermoelectric energy conversion in silicon–germanium alloys
,”
Entropy
24
,
1397
(
2022
).
You do not currently have access to this content.