In this paper, we designed double V-shaped Al/Ni multilayer energy-containing microdevices with different V-angles, and we performed finite element modeling and simulation of the heat transfer process of the designed energy-containing microdevice. Temperature-dependent resistivity was introduced to effectively simulate the phase change during ignition. We simulated the temperature and current density distribution in the central region of the Al/Ni multilayer energy-containing microdevice and predicted the ignition voltage threshold for the specific device structure. Al/Ni multilayer energy-containing microdevices with different V-angles were prepared by electron beam evaporation technology, and ignition experiments on the prepared devices under the excitation of 47 μF capacitance were conducted. The experimental results show that the critical voltage of ignition increases with the increase in the V-angle, which verifies the correctness of the proposed finite element model.

1.
D. P.
Adams
, “
Reactive multilayers fabricated by vapor deposition: A critical review
,”
Thin Solid Films
576
(
2
),
98
128
(
2015
).
2.
J.
Azadmanjiri
,
C. C.
Berndt
,
J.
Wang
et al, “
Nanolaminated composite materials: Structure, interface role and applications
,”
RSC Adv.
6
(
111
),
109361
109385
(
2016
).
3.
L.
Menon
,
S.
Patibandla
,
K. B.
Ram
et al, “
Ignition studies of Al/Fe2O3 energetic nanocomposites
,”
Appl. Phys. Lett.
84
(
23
),
4735
4737
(
2004
).
4.
N.
Amini-Manesh
,
S.
Basu
, and
R.
Kumar
, “
Modeling of a reacting nanofilm on a composite substrate
,”
Energy
36
(
3
),
1688
1697
(
2011
).
5.
J.
Wang
,
B.
Zhou
,
S.
Ye
et al, “
Novel electro-explosive device incorporating a planar transient suppression diode
,”
IEEE Electron Device Lett.
41
(
9
),
1416
1419
(
2020
).
6.
P.
Pennarun
,
C.
Rossi
,
D.
Estève
et al, “
Design, fabrication and characterization of a MEMS safe pyrotechnical igniter integrating arming, disarming and sterilization functions
,”
J. Micromech. Microeng.
16
(
1
),
92
100
(
2006
).
7.
Z.
Wang
,
T.
Wang
,
P.
Xue
et al, “
Study on theoretical model for electrical explosion resistivity of Al/Ni reactive multilayer foil
,”
Defence Technol.
(published online, 2023).
8.
W.
He
,
P.-J.
Liu
,
G.-Q.
He
et al, “
Highly reactive metastable intermixed composites (MICs): Preparation and characterization
,”
Adv. Mater.
30
(
41
),
1706293
(
2018
).
9.
E.
Ma
,
C. V.
Thompson
, and
L. A.
Clevenger
, “
Nucleation and growth during reactions in multilayer Al/Ni films: The early stage of Al3Ni formation
,”
J. Appl. Phys.
69
(
4
),
2211
2218
(
1991
).
10.
E.
Ma
,
C. V.
Thompson
,
L. A.
Clevenger
et al, “
Self-propagating explosive reactions in Al/Ni multilayer thin films
,”
Appl. Phys. Lett.
57
(
12
),
1262
1264
(
1990
).
11.
C. J.
Morris
,
B.
Mary
,
E.
Zakar
et al, “
Rapid initiation of reactions in Al/Ni multilayers with nanoscale layering
,”
J. Phys. Chem. Solids
71
(
2
),
84
89
(
2010
).
12.
C.
Yang
,
Y.
Hu
,
R.
Shen
et al, “
Fabrication and performance characterization of Al/Ni multilayer energetic films
,”
Appl. Phys. A
114
,
459
464
(
2014
).
13.
K.
Han
,
X.
Zeng
,
W.
Zhao
et al, “
Design and fabrication of energetic Al/Ni exploding foil with enhanced energy efficiency and plasma density for direct ignition
,”
Fuel
348
,
128590
(
2023
).
14.
W.
Shao
,
J. M.
Guevara-Vela
,
A.
Fernández-Caballero
et al, “
Accurate prediction of the solid-state region of the Ni-Al phase diagram including configurational and vibrational entropy and magnetic effects
,”
Acta Mater.
253
,
118962
(
2023
).
15.
O.
Politano
and
F.
Baras
, “
Molecular dynamics simulations of self-propagating reactions in Ni–Al multilayer nanofoils
,”
J. Alloys Compd.
652
,
25
29
(
2015
).
16.
V.
Turlo
,
O.
Politano
, and
F.
Baras
, “
Microstructure evolution and self-propagating reactions in Ni-Al nanofoils: An atomic-scale description
,”
J. Alloys Compd.
708
,
989
998
(
2017
).
17.
V.
Turlo
,
O.
Politano
, and
F.
Baras
, “
Alloying propagation in nanometric Ni/Al multilayers: A molecular dynamics study
,”
J. Appl. Phys.
121
(
5
),
055304
(
2017
).
18.
B.
Zhang
,
W.
Ren
,
E.
Chu
et al, “
Simulation design and experimental study for microstructure energy conversion components with different bridge shapes
,”
Chin. J. Energetic Mater.
26
(
12
),
1056
1060
(
2018
).
19.
C.
Ru
,
J.
Dai
,
J.
Xu
et al, “
Design and optimization of micro-semiconductor bridge used for solid propellant microthrusters array
,”
Eur. Phys. J. Appl. Phys.
74
(
3
),
30103
(
2016
).
20.
Y.
Li
,
B.
Zhou
,
Z. C.
Qin
et al, “
Research on the electro-exploding mechanism of semiconductor bridge
,”
Adv. Mater. Res.
683
,
326
332
(
2013
).
21.
See http://cn.comsol.com/. Available online September 30, 2023, the software is used under license.
22.
X.
Zhou
,
M.
Torabi
,
J.
Lu
et al, “
Nanostructured energetic composites: Synthesis, ignition/combustion modeling, and applications
,”
ACS Appl. Mater. Interfaces
6
(
5
),
3058
3074
(
2014
).
23.
P.
Zhu
,
D.
Li
,
S.
Fu
et al, “
Improving reliability of SCB initiators based on Al/Ni multilayer nanofilms
,”
Eur. Phys. J. Appl. Phys.
63
(
1
),
10302
(
2013
).
24.
F.
Schwarz
and
R.
Spolenak
, “
The influence of premixed interlayers on the reaction propagation in Al-Ni multilayers—An MD approach
,”
J. Appl. Phys.
131
(
7
),
075107
(
2022
).
25.
V.
Turlo
,
O.
Politano
, and
F.
Baras
, “
Modeling self-sustaining waves of exothermic dissolution in nanometric Ni-Al multilayers
,”
Acta Mater.
120
,
189
204
(
2016
).
26.
I. E.
Gunduz
,
K.
Fadenberger
,
M.
Kokonou
et al, “
Modeling of the self-propagating reactions of nickel and aluminum multilayered foils
,”
J. Appl. Phys.
105
(
7
),
074903
(
2009
).
27.
K.
Kim
, “
Numerical investigation of the self-propagation of intermetallic reaction waves in nanoscale aluminum/nickel reactive multilayer foils
,”
Korean J. Met. Mater.
57
(
2
),
97
107
(
2019
).
28.
B.
Zuo
,
X.
Zheng
,
C.
Feng
et al, “
Investigation on heat transfer mechanism of semiconductor bridge ignition based on thermoelectric coupling analysis
,”
Mater. Today Commun.
35
,
105820
(
2023
).
29.
G. D.
Theodossiadis
and
M. F.
Zaeh
, “
Study of the kinetic and energetic reaction properties of multilayered aluminum-nickel nanofoils
,”
Prod. Eng.
11
,
245
253
(
2017
).
30.
J.
Choi
and
K.
Kim
, “
A numerical model and analysis of microscale explosive initiator integrated with thin-film reactive bridge of nanoscale aluminum/nickel multilayers
,”
J. Eng. Thermophys.
31
(
1
),
111
131
(
2022
).
31.
Q.
Zeng
,
T.
Wang
,
M.
Li
et al, “
Mechanism and characteristics on the electric explosion of Al/Ni reactive multilayer foils
,”
Appl. Phys. Lett.
115
(
9
),
093102
(
2019
).
32.
Z.
Zheng
,
J.
Xu
,
W.
Zhang
et al, “
An ultrafast temperature response analysis of a MEMS-based igniter using the finite-element method
,”
Energetic Mater. Front.
3
(
1
),
18
25
(
2022
).
33.
M.
Baloochi
,
D.
Shekhawat
,
S. S.
Riegler
et al, “
Influence of initial temperature and convective heat loss on the self-propagating reaction in Al/Ni multilayer foils
,”
Materials
14
(
24
),
7815
(
2021
).
34.
S.
Sen
,
M.
Lake
, and
P.
Schaaf
, “
Al-based binary reactive multilayer films: Large area freestanding film synthesis and self-propagating reaction analysis
,”
Appl. Surf. Sci.
474
,
243
249
(
2019
).
35.
Q.
Bizot
,
O.
Politano
,
A. A.
Nepapushev
et al, “
Reactivity of the Ti-Al system: Experimental study and molecular dynamics simulations
,”
J. Appl. Phys.
127
(
14
),
145304
(
2020
).

Supplementary Material

You do not currently have access to this content.