In this article, the phenomenon of countercurrent imbibition in a specific displacement method occurs within a dipping homogeneous porous medium. This phenomenon plays a vital role in the process of oil recovery, which motivates our analysis. To overcome the difficulties associated with the nonlinear partial differential equation governing the countercurrent imbibition phenomenon, we have been using two distinct methods: the natural transform decomposition method and the variational iteration transform method with their convergence analysis for solutions. These techniques give different perspectives and enable us to obtain approximate solutions. Notably, both the proposed methods demonstrate the potential for substantial production of oil during the secondary oil recovery process in the petroleum industry. The obtained results by the proposed methods show the efficiency in optimizing the oil recovery rate.

1.
N. H.
Abel
, “
Oplösning af et par opgaver ved hjelp af bestemte integraler
,”
Magazin for Naturvidenskaberne
2
,
2
(
1823
).
2.
M.
Caputo
,
Elasticita e Dissipazione
(
Zanichelli
,
1969
).
3.
J.
Liouville
, “
Memoir on some questions of geometry and mechanics, and on a new kind of calculation to solve these questions
,”
J. de l’E’cole Pol. Tech
13
,
1
69
(
1832
).
4.
J.
Liouville
, “
Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions
,”
Ecole polytechnique
,
13
, 71–162 (1832).
5.
G.
Adomian
and
R.
Rach
, “
Light scattering in crystals
,”
J. Appl. Phys.
56
,
2592
2594
(
1984
).
6.
B.
Gu
,
Y. X.
Fan
,
J.
Chen
,
H.-T.
Wang
,
J.
He
, and
W.
Ji
, “
Z-scan theory of two-photon absorption saturation and experimental evidence
,”
J. Appl. Phys.
102
,
083101
(
2007
).
7.
M.
Yüksek
,
U.
Kürüm
,
H. G.
Yaglioglu
,
A.
Elmali
, and
A.
Ateş
, “
Nonlinear and saturable absorption characteristics of amorphous inse thin films
,”
J. Appl. Phys.
107
,
033115
(
2010
).
8.
H. P.
Jani
and
T. R.
Singh
, “
Study of concentration arising in longitudinal dispersion phenomenon by aboodh transform homotopy perturbation method
,”
Int. J. Appl. Comput. Math.
8
,
152
(
2022
).
9.
K.
Shah
and
T.
Singh
, “
A solution of the Burger’s equation arising in the longitudinal dispersion phenomenon in fluid flow through porous media by mixture of new integral transform and homotopy perturbation method
,”
J. Geosci. Environ. Protect.
3
,
24
(
2015
).
10.
A. C.
Varsoliwala
and
T. R.
Singh
, “
Mathematical modeling of atmospheric internal waves phenomenon and its solution by elzaki adomian decomposition method
,”
J. Ocean Eng. Sci.
7
,
203
212
(
2022
).
11.
Y. M.
Chu
,
E. H.
Bani Hani
,
E. R.
El-Zahar
,
A.
Ebaid
, and
N. A.
Shah
, “
Combination of shehu decomposition and variational iteration transform methods for solving fractional third order dispersive partial differential equations
,”
Numer. Methods Partial Differ. Equat.
37
,
1
18
(
2021
).
12.
N.
Anjum
and
J. H.
He
, “
Laplace transform: Making the variational iteration method easier
,”
Appl. Math. Lett.
92
,
134
138
(
2019
).
13.
Akshey
and
T. R.
Singh
, “
A robust iterative approach for space-time fractional multidimensional telegraph equation
,”
Int. J. Appl. Comput. Math.
9
,
1
19
(
2023
).
14.
A. R.
Kanth
,
K.
Aruna
,
K.
Raghavendar
,
H.
Rezazadeh
, and
M.
İnç
, “
Numerical solutions of nonlinear time fractional Klein-Gordon equation via natural transform decomposition method and iterative shehu transform method
,”
J. Ocean Eng. Sci.
(published online,
2023
).
15.
G.
Adomian
,
Solving Frontier Problems of Physics: The Decomposition Method
(
Springer Science & Business Media
,
2013
), Vol. 60.
16.
J. U.
Yadav
and
T. R.
Singh
, “
Solution of one-dimensional ground water recharge through porous media via natural transform decomposition method and variational iteration transform method
,”
Math. Eng. Sci. Aerosp.
14
,
773
791
(
2023
).
17.
J. H.
He
, “
Approximate solution of nonlinear differential equations with convolution product nonlinearities
,”
Comput. Meth. Appl. Mech. Eng.
167
,
69
73
(
1998
).
18.
K.
Vafai
,
Handbook of Porous Media
(
CRC Press
,
2015
).
19.
K.
Vafai
,
Porous Media: Applications in Biological Systems and Biotechnology
(
CRC Press
,
2010
).
20.
F.
Civan
,
Porous Media Transport Phenomena
(
John Wiley & Sons
,
2011
).
21.
S. M.
Skjæveland
and
J.
Kleppe
,
Spor Monograph, Recent Advances in Improved Oil Recovery Methods for North Sea Sandstone Reservoirs
(
Norwegian Petroleum Directorate
,
Norway
,
1992
).
22.
G.
Chavent
and
J.
Jaffré
,
Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows Through Porous Media
(
Elsevier
,
1986
).
23.
S. E.
Buckley
and
M.
Leverett
, “
Mechanism of fluid displacement in sands
,”
Trans. AIME
146
,
107
116
(
1942
).
24.
H.
Zhao
,
W.
Kang
,
H.
Yang
,
H.
Zhang
,
T.
Zhu
,
F.
Wang
,
X.
Li
,
B.
Zhou
,
B.
Sarsenbekuly
,
S.
Aidarova
, and
K.
Ibrashev
, “
Imbibition enhancing oil recovery mechanism of the two surfactants
,”
Phys. Fluids
32
,
047103
(
2020
).
25.
B.
Alazmi
and
K.
Vafai
, “
Analysis of variants within the porous media transport models
,”
J. Heat Transfer
122
,
303
326
(
2000
). v
26.
B. G.
Choksi
,
T. R.
Singh
, and
R. K.
Singh
, “An approximate solution of fingering phenomenon arising in porous media by successive linearisation method,” in Numerical Heat Transfer and Fluid Flow: Select Proceedings of NHTFF 2018 (Springer, 2019), pp. 1–8.
27.
K. R.
Patel
,
M. N.
Mehta
, and
T. R.
Patel
, “
A mathematical model of imbibition phenomenon in heterogeneous porous media during secondary oil recovery process
,”
Appl. Math. Modell.
37
,
2933
2942
(
2013
).
28.
D. B.
Ingham
and
I.
Pop
,
Transport Phenomena in Porous Media III
(
Elsevier
,
2005
), Vol. 3.
29.
A. E.
Scheidegger
and
E. F.
Johnson
, “
The statistical behavior of instabilities in displacement processes in porous media
,”
Can. J. Phys.
39
,
326
334
(
1961
).
30.
A. E.
Scheidegger
,
The Physics of Flow Through Porous Media
(
University of Toronto Press
,
1957
).
31.
M.
Mehta
, “A singular perturbation solution of double phase flow due to differential wettability” Indian J. Pure Appl. Math.
8
,
523
526
(
1977
).
32.
R.
Meher
,
J.
Kesarwani
,
Z.
Avazzadeh
, and
O.
Nikan
, “
Numerical treatment of temporal-fractional porous medium model occurring in fractured media
,”
J. Ocean Eng. Sci.
8
,
481
–499 (
2023
).
33.
F.
Dullien
and
M.
Dong
, “
The importance of capillary forces in waterflooding: An examination of the buckley-leverett frontal displacement theory
,”
J. Porous Media
5
,
1
15
(
2002
).
34.
H.
Naderan
,
M. T.
Manzari
, and
S.
Hannani
, “
A numerical comparative study of various flooding techniques in hydrocarbon reservoirs
,”
J. Porous Media
15
,
101
(
2012
).
35.
K. K.
Patel
,
M.
Mehta
, and
T. R.
Singh
, “
A homotopy series solution to a nonlinear partial differential equation arising from a mathematical model of the counter-current imbibition phenomenon in a heterogeneous porous medium
,”
Eur. J. Mech. B/Fluids
60
,
119
126
(
2016
).
36.
A.
Parikh
,
M.
Mehta
, and
V.
Pradhan
, “
Generalised separable solution of counter-current imbibition phenomenon in homogeneous porous medium in horizontal direction
,”
IJES
2
,
220
226
(
2013
).
37.
S.
Pathak
and
T.
Singh
, “
A mathematical modelling of imbibition phenomenon in inclined homogenous porous media during oil recovery process
,”
Perspect. Sci.
8
,
183
186
(
2016
).
38.
B. G.
Choksi
and
T. R.
Singh
, “
A mathematical model of imbibition phenomenon in homogeneous porous media
,”
Special Topics Rev. Porous Media: Int. J.
10
,
1
13
(
2019
).
39.
K.
Shah
and
T.
Singh
, “
The combined approach to obtain approximate analytical solution of instability phenomenon arising in secondary oil recovery process
,”
Comput. Appl. Math.
37
,
3593
3607
(
2018
).
40.
O. S.
Iyiola
and
S. B.
Folarin
, “
Approximate analytical study of fingero-imbibition phenomena of time-fractional type in double phase flow through porous media
,”
Eur. J. Pure Appl. Math.
7
,
210
229
(
2014
).
41.
Z.
Lei
,
J.
Li
,
S.
Li
, and
C.
Tian
, “
Simulation of spontaneous imbibition process in tight porous media with complex discrete fracture network
,”
Special Topics Rev. Porous Media: Int. J.
7
,
321
334
(
2016
).
42.
J.
Graham
and
J.
Richardson
, “
Theory and application of imbibition phenomena in recovery of oil
,”
J. Petroleum Technol.
11
,
65
69
(
1959
).
43.
K.
Miller
and
B.
Ross
, Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley-Interscience Publication, 1993), pp.
357
360
.
44.
M.
Caputo
, “
Linear models of dissipation whose Q is almost frequency independent–II
,”
Geophys. J. Int.
13
,
529
539
(
1967
).
45.
Z. H.
Khan
and
W. A.
Khan
, “
N-transform properties and applications
,”
NUST J. Eng. Sci.
1
,
127
133
(
2008
).
46.
D.
Loonker
and
P.
Banerji
, “
Solution of fractional ordinary differential equations by natural transform
,”
Int. J. Math. Eng. Sci.
12
,
1
7
(
2013
).
47.
S.
Maitama
and
W.
Zhao
, “New integral transform: Shehu transform a generalization of sumudu and laplace transform for solving differential equations,” arXiv:1904.11370 (2019).
48.
L.
Akinyemi
and
O. S.
Iyiola
, “
Exact and approximate solutions of time-fractional models arising from physics via shehu transform
,”
Math. Meth. Appl. Sci.
43
,
7442
7464
(
2020
).
49.
D.
Kashchiev
and
A.
Firoozabadi
, “
Analytical solutions for 1D countercurrent imbibition in water-wet media
,”
SPE J.
8
,
401
408
(
2003
).
You do not currently have access to this content.