Germanium has received increased research interest for use in next-generation CMOS technology as its high carrier mobilities allow for enhanced device performance without further device scaling. Fabrication of high-performance NMOS Ge devices is hindered by high diffusivity and low activation of n-type implanted dopants. While the high solid solubility of P in Ge makes it an ideal dopant, its diffusion mechanism is poorly understood and results in heavy tradeoffs between implanted dopant diffusion and electrical activation. In this study, we demonstrate the suppression of in-diffusion of implanted P via a co-implantation with Ar. Diffusivity of implanted P species and their activation is investigated over a wide range of annealing temperatures and times. P diffusion was explored by secondary-ion-mass-spectrometry and the diffusivity of P was extracted by solving the 2D diffusion equation using the Crank–Nicolson method, and the dopant electrical activation was extracted from the Hall effect measurements. The co-implantation of P with Ar entirely suppresses P in-diffusion up to annealing temperatures as high as 700 °C but at the cost of its reduced electrical activation. Extracted diffusivity reveals a highly correlated exponential relationship with annealing. P activation energy was extracted from Arrhenius behavior. A 450 °C/10 min annealing of P implant shows negligible in-diffusion of P with the activation as high as 70%. RTA processing of the Ar/P co-implanted sample at 750 °C for 1 min results in a negligible P in-diffusion and an electrical activation of 20%.

1.
S. E.
Thompson
,
R. S.
Chau
,
T.
Ghani
,
K.
Mistry
,
S.
Tyagi
, and
M. T.
Bohr
,
IEEE Trans. Semiconductor Manuf.
18
(
1
),
26
(
2005
).
3.
M. Badaroglu,
IEEE International Roadmap for Devices and Systems Outbriefs
(IEEE, 2021), p. 01–38.
4.
C. O.
Chui
,
K.
Gopalakrishnan
,
P. B.
Griffin
,
J. D.
Plummer
, and
K. C.
Saraswat
,
Appl. Phys. Lett.
83
(
16
),
3275
(
2003
).
5.
E.
Simoen
and
C.
Claeys
,
Germanium-Based Technologies From Materials to Devices
(
Elsevier Inc.
,
Oxford
,
2007
).
6.
J.
Kilby
,
Nobel Lectures, Physics 1996–2000
(
World Scientific Publishing Co
,
Singapore
,
2002
).
7.
P.
Seidenberg
, “From Germanium to Silicon, A History of Change in the Technology of the Semiconductors” in Facets: New Perspectives on the History of Semiconductors (IEEE, 1997), p. 35–74
8.
K.
Prabhakaran
and
T.
Ogino
,
Surf. Sci.
325
,
263
(
1995
).
9.
K.
Seo
,
P. C.
McIntyre
,
S.
Sun
,
D.-I.
Lee
,
P
Pianetta
, and
K. C.
Saraswat
,
Appl. Phys. Lett.
87
(
4
),
042902
(
2005
).
10.
X.
Yang
,
S.
Wang
,
X.
Zhang
,
B.
Sun
,
W.
Zhao
,
H.
Chang
,
Z.
Zeng
, and
H.
Liu
,
Appl. Phys. Lett.
105
,
092101
(
2014
).
11.
S.
Mahapatra
,
C. D.
Parikh
,
V. R.
Rao
,
C. R.
Viswanathan
, and
J.
Vasi
,
IEEE Trans. Electron Devices
47
(
4
),
789
(
2000
).
12.
J. J.
Maa
and
C. Y.
Wu
,
IEEE Trans. Electron Devices
42
(
7
),
1262
(
1995
).
13.
P.
Bhatt
,
K.
Chaudhuri
,
S.
Kothari
,
A.
Nainani
, and
S.
Lodha
,
Appl. Phys. Lett
103
(
17
),
172107
(
2013
).
14.
S.
Kothari
,
D.
Vaidya
,
H.
Nejad
,
N.
Variam
,
S.
Ganguly
, and
S.
Lodha
,
Appl. Phys. Lett
112
(
20
),
203503
(
2018
).
15.
P. P.
Manik
and
S.
Lodha
,
Appl. Phys. Express
8
,
051302
(
2015
).
16.
Y.
Zhou
,
W.
Han
,
Y.
Wang
,
F.
Xiu
,
J.
Zou
,
R. K.
Kawakami
, and
K. L.
Wang
,
Appl. Phys. Lett
96
,
102103
(
2010
).
17.
K.
Gallacher
,
P.
Velha
,
D. J.
Paul
,
I.
MacLaren
,
M.
Myronov
, and
D. R.
Leadley
,
Appl. Phys. Lett.
100
,
022113
(
2012
).
18.
P.
Zimmerman
,
G.
Nicholas
,
B. D.
Jaeger
,
B.
Kaczer
,
A.
Stesmans
,
L.
Ragnarsson
,
D. P.
Brunco
,
F. E.
Leys
,
M.
Caymax
,
G.
Winderickx
,
K.
Opsomer
,
M.
Meuris
, and
M. M.
Heyns
, “High performance Ge pMOS devices using a Si-compatible process flow,”
2006 International Electron Devices Meeting
(IEEE, San Francisco, CA, 2006), pp. 1–4.
19.
R.
Xie
,
T. H.
Phung
,
W.
He
,
M.
Yu
, and
C.
Zhu
,
IEEE Trans. Electron Devices
56
,
1330
(
2009
).
20.
C. O.
Chui
,
L.
Kulig
,
J.
Moran
,
W.
Tsai
, and
K. C.
Saraswat
,
Appl. Phys. Lett.
87
,
091909
(
2005
).
21.
J.
Oh
,
I.
Ok
,
C. Y.
Kang
,
M.
Jamil
,
S. H.
Lee
,
W. Y.
Loh
,
J.
Huang
,
B.
Sassman
,
L.
Smith
,
S.
Parthasarathy
,
B. E.
Coss
,
W. H.
Choi
,
H. D.
Lee
,
M.
Cho
,
S. K.
Banerjee
,
P.
Majhi
,
P. D.
Kirsch
,
H. H.
Tseng
, and
R.
Jammy
,
VLSI Symp. Tech. Dig.
2009
,
238
(
2009
).
22.
R.
Milazzo
,
G.
Impellizzeri
,
D.
Piccinotti
,
D. D.
Salvador
,
A.
Portavoce
,
A. L.
Magna
,
G.
Fortunato
,
D.
Mangelinck
,
V.
Privitera
,
A.
Carnera
, and
E.
Napolitani
,
Appl. Phys. Lett.
110
,
11905
(
2017
).
23.
J.
Kim
,
S. W.
Bedell
, and
D. K.
Sadana
,
Appl. Phys. Lett.
101
(
11
),
112107
(
2012
).
24.
A.
Chroneos
and
H.
Bracht
,
Appl. Phys. Rev.
1
,
011301
(
2014
).
25.
H. A. W.
El Mubarek
,
J. Appl. Phys.
114
,
223512
(
2013
).
26.
C.
Monmeyran
,
I. F.
Crowe
,
R. M.
Gwilliam
,
C.
Heidelberger
,
E.
Napolitani
,
D.
Pastor
,
H. H.
Gandhi
,
H.
Hemi
,
E.
Mazur
,
J.
Michel
,
A. M.
Agarwal
, and
L. C.
Kimerling
,
J. Appl. Phys.
123
,
161524
(
2018
).
27.
C.
Monmeyran
,
I. F.
Crowe
,
R. M.
Gwilliam
,
J.
Michel
,
L. C.
Kimerling
, and
A. M.
Agarwal
,
Int. Mater. Rev.
62
,
334
347
(
2017
).
28.
S.
Dev
,
N.
Pradhan
,
N.
Variam
, and
S.
Lodha
,
IEEE Trans. Electron Devices
67
,
419
(
2020
).
29.
S.
Prucnal
,
M. O.
Liedke
,
X.
Wang
,
M.
Butterling
,
M.
Posselt
,
J.
Knoch
,
H.
Windgassen
,
E.
Hirschmann
,
Y.
Berencén
,
L.
Rebohle
,
M.
Wang
,
E.
Napolitani
,
J.
Frigerio
,
A.
Ballabio
,
G.
Isella
,
R.
Hübner
,
A.
Wagner
,
H.
Bracht
,
M.
Helm
, and
X.
Zhou
,
New J. Phys.
22
,
123036
(
2020
).
30.
D.
Pastor
,
H. H.
Gandhi
,
C.
Monmeyran
,
A. J.
Akey
,
R.
Milazzo
,
Y.
Cai
,
E.
Napolitani
,
R. M.
Gwilliam
,
I. F.
Crowe
,
J.
Michel
,
L. C.
Kimerling
,
A.
Agarwal
,
E.
Mazur
, and
M. J.
Aziz
,
J. Appl. Phys.
123
(
16
),
165101
(
2018
).
31.
J. F.
Ziegler
,
M. D.
Ziegler
and
J. P.
Biersack
,
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
268(11–12), 1818–1823 (2010).
32.
See https://www.umicore.com/ for information about Ge wafers used in this study.
33.
See https://krokoimplants.com/ for information about the ion implantation methods used in this study.
34.
See https://www.eag.com/ for information about the SIMS measurements performed in this study.
35.
J.
Crank
and
P.
Nicolson
,
Proc. Camb. Phil. Soc.
43
,
50
(
1947
).
36.
S.
Koffel
,
P.
Scheiblin
,
A.
Claverie
, and
V.
Mazzocchi
,
Mater. Sci. Eng. B
154–155
,
60
(
2008
).
37.
S.
Brotzmann
and
H.
Bracht
,
J. Appl. Phys.
103
,
033508
(
2008
).
38.
M.
Dehghan
,
J Comput. Appl. Math.
106
,
255
(
1999
).
40.
O.
Vail
,
P.
Taylor
,
P.
Folkes
,
B.
Nichols
,
B.
Haidet
,
K.
Mukherjee
, and
G.
de Coster
,
Phys. Status Solidi B
257
,
1800513
(
2020
).
41.
V. I.
Fistul
,
M. I.
Iglitsyn
, and
E. M.
Omelyanovskii
,
Sov. Phys. Solid state
4
,
784
785
(
1962
).
You do not currently have access to this content.