Carbon-doped Ge2Sb2Te5 (CGST) is a potential candidate in phase change random access memory (PCRAM) with superb thermal stability and ultrahigh cycle endurance. Direct observation of the microstructure evolution of CGST is desirable to uncover the phase transformation mechanism on the relationship of nucleation/crystalline behaviors of the crystalline phase at elevated temperatures and the pristine amorphous phase at room temperature. Here, we investigate the structural evolution of CGST using combined in situ techniques. Our in situ x-ray diffraction and ellipsometry results demonstrate that CGST exhibits a much higher phase transition temperature than undoped one. Temperature-dependent in situ transmission electron microscopy observations further reveal that carbon doping plays a critical role in tailoring the properties of GST by tuning the stochasticity of nucleation/crystallization, stabilizing amorphous and crystalline GST via isolating and refining the grain size at room temperature and elevated temperature. Our work provides detailed information for understanding the microscopic origin of crystallization kinetics of carbon-doped phase change materials toward high-performance PCRAM.

1.
W.
Zhang
,
R.
Mazzarello
,
M.
Wuttig
, and
E.
Ma
,
Nat. Rev. Mater.
4
(
3
),
150
168
(
2019
).
2.
3.
A.
Lotnyk
,
M.
Behrens
, and
B.
Rauschenbach
,
Nanoscale Adv.
1
(
10
),
3836
3857
(
2019
).
4.
Y.-H.
Lee
,
P. J.
Liao
,
V.
Hou
,
D.
Heh
,
C.-H.
Nien
,
W.-H.
Kuo
,
G. T.
Chen
,
S.-M.
Yu
,
Y.-S.
Chen
,
J.-Y.
Wu
,
X.
Bao
, and
C. H.
Diaz
, “
Composition segregation of Ge-rich GST and its effect on reliability
,” in
2021 IEEE International Reliability Physics Symposium (IRPS)
(IEEE,
2021)
, pp
1
6
.
5.
Y.-J.
Park
,
T.-Y.
Yang
,
J.-Y.
Cho
,
S.-Y.
Lee
, and
Y.-C.
Joo
,
Appl. Phys. Lett.
103
(
7
), 073503 (
2013
).
6.
Y.
Wang
,
Y.
Yuan
,
Y.
Wang
,
S.
Yuan
, and
X.
Chen
,
IEEE Trans. Device Mater. Reliab.
21
(
2
),
236
239
(
2021
).
7.
S.-M.
Yoon
,
K.-J.
Choi
,
N.-Y.
Lee
,
S.-Y.
Lee
,
Y.-S.
Park
, and
B.-G.
Yu
,
Jpn. J. Appl. Phys.
46
(
4
),
L99
L102
(
2007
).
8.
J. H.
Han
,
H.
Jeong
,
H.
Park
,
H.
Kwon
,
D.
Kim
,
D.
Lim
,
S. J.
Baik
,
Y.-K.
Kwon
, and
M.-H.
Cho
,
RSC Adv.
11
(
36
),
22479
22488
(
2021
).
9.
T.
Li
,
J.
Shen
,
L.
Wu
,
Z.
Song
,
S.
Lv
,
D.
Cai
,
S.
Zhang
,
T.
Guo
,
S.
Song
, and
M.
Zhu
,
J. Phys. Chem. C
123
(
21
),
13377
13384
(
2019
).
10.
C.
Liu
,
Y.
Zheng
,
T.
Xin
,
Y.
Zheng
,
R.
Wang
, and
Y.
Cheng
,
Nanomaterials
13
(
3
),
582
(
2023
).
11.
M.
Zhu
,
W.
Song
,
P. M.
Konze
,
T.
Li
,
B.
Gault
,
X.
Chen
,
J.
Shen
,
S.
Lv
,
Z.
Song
,
M.
Wuttig
, and
R.
Dronskowski
,
Nat. Commun.
10
(
1
),
3525
(
2019
).
12.
Q.
Wang
,
P. M.
Konze
,
G.
Liu
,
B.
Liu
,
X.
Chen
,
Z.
Song
,
R.
Dronskowski
, and
M.
Zhu
,
J. Phys. Chem. C
123
(
50
),
30640
30648
(
2019
).
13.
Q.
Yin
and
L.
Chen
,
J. Mater. Sci. Mater. Electron.
29
(
19
),
16523
16533
(
2018
).
14.
X.
Zhou
,
L.
Wu
,
Z.
Song
,
F.
Rao
,
M.
Zhu
,
C.
Peng
,
D.
Yao
,
S.
Song
,
B.
Liu
, and
S.
Feng
,
Appl. Phys. Lett.
101
(
14
),
142104
(
2012
).
15.
Y.
Xue
,
S.
Song
,
X.
Chen
,
S.
Yan
,
S.
Lv
,
T.
Xin
, and
Z.
Song
,
J. Mater. Chem. C
10
(
9
),
3585
3592
(
2022
).
16.
R.
Wang
,
Z.
Song
,
W.
Song
,
T.
Xin
,
S.
Lv
,
S.
Song
, and
J.
Liu
,
InfoMat
3
(
9
),
1008
1015
(
2021
).
17.
R.
Wang
,
J.
Shen
,
X.
Chen
,
H.
Wang
,
S.
Song
, and
Z.
Song
,
Mater. Lett.
278
,
128402
(
2020
).
18.
Z.
Tan
,
M.
Wen
,
J.
Guo
,
J.
Chen
,
X.
Wu
, and
Z.
Song
,
Solid State Electron.
186
,
108176
(
2021
).
19.
Z.
Song
,
D.
Cai
,
Y.
Cheng
,
L.
Wang
,
S.
Lv
,
T.
Xin
, and
G.
Feng
,
Nanoscale
13
(
23
),
10455
10461
(
2021
).
20.
L.
Zheng
,
X.-M.
Yang
,
Y.-F.
Hu
,
L.-J.
Zhai
,
J.-Z.
Xue
,
X.-Q.
Zhu
, and
Z.-T.
Song
,
Chin. Phys. Lett.
35
(
12
),
126801
(
2018
).
21.
K. B.
Borisenko
,
Y.
Chen
,
D. J. H.
Cockayne
,
S. A.
Song
, and
H. S.
Jeong
,
Acta Mater.
59
(
11
),
4335
4342
(
2011
).
22.
M.-C.
Jung
,
Y. M.
Lee
, and
K.
Kim
,
Curr. Appl. Phys.
14
(
11
),
1421
1423
(
2014
).
23.
T.
Li
,
L.
Wu
,
X.
Ji
,
Y.
Zheng
,
G.
Liu
,
Z.
Song
,
J.
Shi
,
M.
Zhu
,
S.
Song
, and
S.
Feng
,
AIP Adv.
8
(
2
),
025201
(
2018
).
24.
F.
Rao
,
K.
Ding
,
Y.
Zhou
,
Y.
Zheng
,
M.
Xia
,
S.
Lv
,
Z.
Song
,
S.
Feng
,
I.
Ronneberger
,
R.
Mazzarello
,
W.
Zhang
, and
E.
Ma
,
Science
358
(
6369
),
1423
1427
(
2017
).
25.
X.
Zhou
,
M.
Xia
,
F.
Rao
,
L.
Wu
,
X.
Li
,
Z.
Song
,
S.
Feng
, and
H.
Sun
,
ACS Appl. Mater. Interfaces
6
(
16
),
14207
14214
(
2014
).
26.
A.
Lotnyk
,
T.
Dankwort
,
I.
Hilmi
,
L.
Kienle
, and
B.
Rauschenbach
,
Nanoscale
11
(
22
),
10838
10845
(
2019
).
27.
T.-T.
Jiang
,
X.-D.
Wang
,
J.-J.
Wang
,
H.-Y.
Zhang
,
L.
Lu
,
C.
Jia
,
M.
Wuttig
,
R.
Mazzarello
,
W.
Zhang
, and
E.
Ma
,
Fundam. Res.
14
,
37
(
2022
).
28.
T.-T.
Jiang
,
X.-D.
Wang
,
J.-J.
Wang
,
Y.-X.
Zhou
,
D.-L.
Zhang
,
L.
Lu
,
C.-L.
Jia
,
M.
Wuttig
,
R.
Mazzarello
, and
W.
Zhang
,
Acta Mater.
187
,
103
111
(
2020
).
29.
J. M.
Yuk
,
J.
Park
,
P.
Ercius
,
K.
Kim
,
D. J.
Hellebusch
,
M. F.
Crommie
,
J. Y.
Lee
,
A.
Zettl
, and
A. P.
Alivisatos
,
Science
336
(
6077
),
61
64
(
2012
).
30.
Y.
Zheng
,
Y.
Wang
,
T.
Xin
,
Y.
Cheng
,
R.
Huang
,
P.
Liu
,
M.
Luo
,
Z.
Zhang
,
S.
Lv
,
Z.
Song
, and
S.
Feng
,
Commun. Chem.
2
(
1
),
13
(
2019
).
31.
R.
Shao
,
L.
Wang
,
W.
Dong
,
L.
Yao
,
Y.
Chen
,
L.
Dong
,
K.
Zheng
, and
X.
Han
,
Appl. Phys. Lett.
116
(
22
),
222105
(
2020
).
32.
R.
Qi
,
F.
Sui
,
R.
Huang
,
S.
Song
,
X.
Li
, and
Z.
Song
,
Appl. Phys. Lett.
123
(
16
),
163502
(
2023
).

Supplementary Material

You do not currently have access to this content.