Accurate rotation of microparticles is of great significance in micro-rotors, multi-angle microscopic observation, microbial three-dimensional phenotyping, and microsystem assembly. However, most methods can only rotate a single object, thus limiting the throughput. In this study, we realized the simultaneous rotation of many trapped and aligned subwavelength glass cylinders inside an evanescent wave field excited by a resonant phononic crystal plate. The unique feature of the rotation lies in its periodic distribution as well as the rotation axis being perpendicular to the acoustic axis. The rotary power originates from viscous torque generated by the evanescent wave-induced near-boundary acoustic streaming's asymmetry distribution on the trapped cylinder. Furthermore, the three-dimensional topographies of rotated cylinders can be reconstructed from the microscopic images under different rotating angles. Our findings can pave the way toward developing simple, disposable, and scalable microfluidic devices for massive subwavelength acoustic rotation by carefully designing acoustic metamaterials.

1.
L.
Zhang
and
P. L.
Marston
, “
Acoustic radiation torque on small objects in viscous fluids and connection with viscous dissipation
,”
J. Acoust. Soc. Am.
136
(
6
),
2917
2921
(
2014
).
2.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Orbital angular momentum transfer to stably trapped elastic particles in acoustical vortex beams
,”
Phys. Rev. Lett.
121
(
7
),
074301
(
2018
).
3.
A.
Anhäuser
,
R.
Wunenburger
, and
E.
Brasselet
, “
Acoustic rotational manipulation using orbital angular momentum transfer
,”
Phys. Rev. Lett.
109
(
3
),
034301
(
2012
).
4.
D.
Foresti
and
D.
Poulikakos
, “
Acoustophoretic contactless elevation, orbital transport and spinning of matter in Air
,”
Phys. Rev. Lett.
112
(
2
),
024301
(
2014
).
5.
L.
Zhang
and
P. L.
Marston
, “
Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects
,”
Phys. Rev. E
84
(
6 Pt 2
),
065601
(
2011
).
6.
C. E.
Demore
,
Z.
Yang
,
A.
Volovick
,
S.
Cochran
,
M. P.
MacDonald
, and
G. C.
Spalding
, “
Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams
,”
Phys. Rev. Lett.
108
(
19
),
194301
(
2012
).
7.
G. T.
Silva
,
T. P.
Lobo
, and
F. G.
Mitri
, “
Radiation torque produced by an arbitrary acoustic wave
,”
Europhys. Lett.
97
(
5
),
54003
(
2012
).
8.
R.
Wunenburger
,
J. I. V.
Lozano
, and
E.
Brasselet
, “
Acoustic orbital angular momentum transfer to matter by chiral scattering
,”
New J. Phys.
17
,
103022
(
2015
).
9.
L.
Zhang
, “
Reversals of orbital angular momentum transfer and radiation torque
,”
Phys. Rev. Appl.
10
,
034039
(
2018
).
10.
J.
Zhang
,
S.
Yang
,
C.
Chen
,
J. H.
Hartman
,
P. H.
Huang
,
L.
Wang
,
Z.
Tian
,
P.
Zhang
,
D.
Faulkenberry
,
J. N.
Meyer
, and
T. J.
Huang
, “
Surface acoustic waves enable rotational manipulation of Caenorhabditis elegans
,”
Lab Chip
19
(
6
),
984
992
(
2019
).
11.
C.
Chen
,
Y.
Gu
,
J.
Philippe
,
P.
Zhang
,
H.
Bachman
,
J.
Zhang
,
J.
Mai
,
J.
Rufo
,
J. F.
Rawls
,
E. E.
Davis
,
N.
Katsanis
, and
T. J.
Huang
, “
Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae
,”
Nat. Commun.
12
(
1
),
1118
(
2021
).
12.
R.
Zhang
,
H.
Guo
,
W.
Deng
,
X.
Huang
,
F.
Li
,
J.
Lu
, and
Z.
Liu
, “
Acoustic tweezers and motor for living cells
,”
Appl. Phys. Lett.
116
,
123503
(
2020
).
13.
D.
Baresch
,
J. L.
Thomas
, and
R.
Marchiano
, “
Orbital angular momentum transfer to stably trapped elastic particles in acoustical vortex beams
,”
Phys. Rev. Lett.
121
(
7
),
074301
(
2018
).
14.
A.
Marzo
,
M.
Caleap
, and
B. W.
Drinkwater
, “
Acoustic virtual vortices with tunable orbital angular momentum for trapping of mie particles
,”
Phys. Rev. Lett.
120
(
4
),
044301
(
2018
).
15.
B.
Zhang
,
H.
Wu
,
H.
Kim
,
P. J.
Welch
,
A.
Cornett
,
G.
Stocker
,
R. G.
Nogueira
,
J.
Kim
,
G.
Owens
,
P. A.
Dayton
,
Z.
Xu
,
C.
Shi
, and
X.
Jiang
, “
A model of high-speed endovascular sonothrombolysis with vortex ultrasound-induced shear stress to treat cerebral venous sinus thrombosis
,”
Research
6,
60048
(
2023
).
16.
Y.
Yang
,
T.
Ma
,
S.
Li
,
Q.
Zhang
,
J.
Huang
,
Y.
Liu
,
J.
Zhuang
,
Y.
Li
,
X.
Du
,
L.
Niu
,
Y.
Xiao
,
C.
Wang
,
F.
Cai
, and
H.
Zheng
, “
Self-navigated 3D acoustic tweezers in complex media based on time reversal
,”
Research
2021
,
9781394
.
17.
T.
Schwarz
,
G.
Petit-Pierre
, and
J.
Dual
, “
Rotation of non-spherical micro-particles by amplitude modulation of superimposed orthogonal ultrasonic modes
,”
J. Acoust. Soc. Am.
133
(
3
),
1260
1268
(
2013
).
18.
T.
Schwarz
,
P.
Hahn
,
G.
Petit-Pierre
, and
J.
Dual
, “
Rotation of fibers and other non-spherical particles by the acoustic radiation torque
,”
Microfluid. Nanofluid.
18
(
1
),
65
79
(
2015
).
19.
A.
Lamprecht
,
T.
Schwarz
,
J.
Wang
, and
J.
Dual
, “
Viscous torque on spherical micro particles in two orthogonal acoustic standing wave fields
,”
J. Acoust. Soc. Am.
138
(
1
),
23
32
(
2015
).
20.
P.
Hahn
,
A.
Lamprecht
, and
J.
Dual
, “
Numerical simulation of micro-particle rotation by the acoustic viscous torque
,”
Lab Chip
16
(
23
),
4581
4594
(
2016
).
21.
I.
Bernard
,
A. A.
Doinikov
,
P.
Marmottant
,
D.
Rabaud
,
C.
Poulain
, and
P.
Thibault
, “
Controlled rotation and translation of spherical particles or living cells by surface acoustic waves
,”
Lab Chip
17
(
14
),
2470
2480
(
2017
).
22.
Y.
Li
,
X.
Liu
,
Q.
Huang
, and
T.
Arai
, “
Controlled rotation of micro-objects using acoustically driven microbubbles
,”
Appl. Phys. Lett.
118
(
6
), 063701 (
2021
).
23.
A.
Ozcelik
,
N.
Nama
,
P. H.
Huang
,
M.
Kaynak
,
M. R.
McReynolds
,
W.
Hanna-Rose
, and
T. J.
Huang
, “
Acoustofluidic rotational manipulation of cells and organisms using oscillating solid structures
,”
Small
12
(
37
),
5120
5125
(
2016
).
24.
D.
Ahmed
,
A.
Ozcelik
,
N.
Bojanala
,
N.
Nama
,
A.
Upadhyay
,
Y.
Chen
,
W.
Hanna-Rose
, and
T. J.
Huang
, “
Rotational manipulation of single cells and organisms using acoustic waves
,”
Nat. Commun.
7,
711085
(
2016
).
25.
A.
Garbin
,
I.
Leibacher
,
P.
Hahn
,
H.
Le Ferrand
,
A.
Studart
, and
J.
Dual
, “
Acoustophoresis of disk-shaped microparticles: A numerical and experimental study of acoustic radiation forces and torques
,”
J. Acoust. Soc. Am.
138
(
5
),
2759
2769
(
2015
).
26.
G.
Maidanik
, “
Torques due to acoustical radiation pressure
,”
J. Acoust. Soc. Am.
30
(
7
),
620
623
(
1958
).
27.
L.
Zhang
and
P. L.
Marston
, “
Acoustic radiation torque and the conservation of angular momentum (L)
,”
J. Acoust. Soc. Am.
129
(
4
),
1679
1680
(
2011
).
28.
Z.
Fan
,
D.
Mei
,
K.
Yang
, and
Z.
Chen
, “
Acoustic radiation torque on an irregularly shaped scatterer in an arbitrary sound field
,”
J. Acoust. Soc. Am.
124
(
5
),
2727
2732
(
2008
).
29.
A.
Marzo
,
S. A.
Seah
,
B. W.
Drinkwater
,
D. R.
Sahoo
,
B.
Long
, and
S.
Subramanian
, “
Holographic acoustic elements for manipulation of levitated objects
,”
Nat. Commun.
6
,
8661
(
2015
).
30.
S.
Deng
,
K.
Jia
,
E.
Wu
,
X.
Hu
,
Z.
Fan
, and
K.
Yang
, “
Controllable micro-particle rotation and transportation using sound field synthesis technique
,”
Appl. Sci.
8
(
1
),
73
(
2018
).
31.
G. T.
Silva
, “
Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid
,”
J. Acoust. Soc. Am.
136
(
5
),
2405
2413
(
2014
).
32.
K. Y.
Bliokh
and
F.
Nori
, “
Spin and orbital angular momenta of acoustic beams
,”
Phys. Rev. B
99
,
174310
(
2019
).
33.
I. D.
Toftul
,
K. Y.
Bliokh
,
M. I.
Petrov
, and
F.
Nori
, “
Acoustic radiation force and torque on small particles as measures of the canonical momentum and spin densities
,”
Phys. Rev. Lett.
123
(
18
),
183901
(
2019
).
34.
Z.
Tian
,
C.
Shen
,
J.
Li
,
E.
Reit
,
H.
Bachman
,
J. E. S.
Socolar
,
S. A.
Cummer
, and
T.
Jun Huang
, “
Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals
,”
Nat. Commun.
11
(
1
),
762
(
2020
).
35.
H. S.
Lai
,
H.
Chen
,
C. H.
Xia
,
S. Y.
Yu
,
C.
He
, and
Y. F.
Chen
, “
Coexistence of all-order topological states in a three-dimensional phononic topological crystalline insulator
,”
Research
6
,
0235
(
2023
).
36.
Y. T.
Luo
,
P. Q.
Li
,
D. T.
Li
,
Y. G.
Peng
,
Z. G.
Geng
,
S. H.
Xie
,
Y.
Li
,
A.
Alu
,
J.
Zhu
, and
X. F.
Zhu
, “
Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures
,”
Research
2020
,
8757403
.
37.
F.
Li
,
F.
Cai
,
Z.
Liu
,
L.
Meng
,
M.
Qian
,
C.
Wang
,
Q.
Cheng
,
M.
Qian
,
X.
Liu
,
J.
Wu
,
J.
Li
, and
H.
Zheng
, “
Phononic-crystal-based acoustic sieve for tunable manipulations of particles by a highly localized radiation force
,”
Phys. Rev. Appl.
1
,
051001
(
2014
).
38.
L.
Huang
,
F.
Li
,
F.
Cai
,
L.
Meng
,
W.
Zhou
,
D.
Kong
, and
H.
Zheng
, “
Phononic crystal-induced standing Lamb wave for the translation of subwavelength microparticles
,”
Appl. Phys. Lett.
121
,
023505
(
2022
).
39.
F.
Li
,
F.
Cai
,
L.
Zhang
,
Z.
Liu
,
F.
Li
,
L.
Meng
,
J.
Wu
,
J.
Li
,
X.
Zhang
, and
H.
Zheng
, “
Phononic-crystal-enabled dynamic manipulation of microparticles and cells in an acoustofluidic channel
,”
Phys. Rev. Appl.
13
,
044077
(
2020
).
40.
F.
Li
,
Y.
Xiao
,
J.
Lei
,
X.
Xia
,
W.
Zhou
,
L.
Meng
,
L.
Niu
,
J.
Wu
,
J.
Li
,
F.
Cai
, and
H.
Zheng
, “
Rapid acoustophoretic motion of microparticles manipulated by phononic crystals
,”
Appl. Phys. Lett.
113
,
173503
(
2018
).
41.
F.
Li
,
F.
Yan
,
Z.
Chen
,
J.
Lei
,
J.
Yu
,
M.
Chen
,
W.
Zhou
,
L.
Meng
,
L.
Niu
,
J.
Wu
,
J.
Li
,
F.
Cai
, and
H.
Zheng
, “
Phononic crystal-enhanced near-boundary streaming for sonoporation
,”
Appl. Phys. Lett.
113
(
8
),
083701
(
2018
).
42.
Z.
He
,
H.
Jia
,
C.
Qiu
,
S.
Peng
,
X.
Mei
,
F.
Cai
,
P.
Peng
,
M.
Ke
, and
Z.
Liu
, “
Acoustic transmission enhancement through a periodically structured stiff plate without any opening
,”
Phys. Rev. Lett.
105
(
7
),
074301
(
2010
).
43.
F.
Cai
,
Z.
He
,
Z.
Liu
,
L.
Meng
,
X.
Cheng
, and
H.
Zheng
, “
Acoustic trapping of particle by a periodically structured stiff plate
,”
Appl. Phys. Lett.
99
(
25
),
253505
(
2011
).
44.
P.
Pan
,
J. D.
Laver
,
Z.
Qin
,
Y.
Zhou
,
R.
Peng
,
L.
Zhao
,
H.
Xie
,
J. A.
Calarco
, and
X.
Liu
, “
On-chip rotation of Caenorhabditis elegans using microfluidic vortices
,”
Adv. Mater. Technol.
6
(
1
), 2000575 (
2020
).

Supplementary Material

You do not currently have access to this content.