Motivated by the booming development of spintronics based on chiral helical microstructures, we employed the standard nonequilibrium Green’s function theory to study nonreciprocity and chirality of the heat generation and spin filtering in ferromagnetic helical chains. Our results demonstrate that magnetization, spin–orbit interaction, and nonstep electrostatic potential distribution by bias jointly determine nonreciprocity of the heat generation, and only spin–orbit interaction determines nonreciprocity of the spin-polarized current. Chirality of the heat generation and spin-polarized current is determined by both magnetization and spin–orbit interaction, and some quantitative relationships related to chirality were discovered. However, a transverse field can break these relations and suppress heat generation significantly and modulate nonreciprocity and chirality of the spin-polarized current effectively. By further simulating the critical electrostatic potential distribution, we found with the transverse field applied, compared to the case with zero temperature, that the finite temperature less than one characteristic phonon energy can suppress nonreciprocity of the heat generation while enhancing that of the spin filtering. In terms of chirality, compared to the left-handed helical structure, the right-handed one is more advantageous for designing spin filtering diodes.

1.
H. W.
Fink
and
C.
Schönenberger
,
Nature
398
,
407
(
1999
).
2.
P. J.
de Pablo
,
F.
Moreno-Herrero
,
J.
Colchero
,
J.
Gómez Herrero
,
P.
Herrero
,
A. M.
Baró
,
P.
Ordejón
,
J. M.
Soler
, and
E.
Artacho
,
Phys. Rev. Lett.
85
,
4992
(
2000
).
3.
M.
Galperin
,
M. A.
Ratner
, and
A.
Nitzan
,
J. Chem. Phys.
121
,
11965
(
2004
).
4.
S.
Datta
,
Quantum Transport: Atom to Transistor
(
Cambridge University Press
,
Cambridge
,
2005
).
5.
J. T.
and
J.-S.
Wang
,
Phys. Rev. B
76
,
165418
(
2007
).
6.
Q. F.
Sun
and
X. C.
Xie
,
Phys. Rev. B
75
,
155306
(
2007
).
7.
J.
Liu
,
J. T.
Song
,
Q. F.
Sun
, and
X. C.
Xie
,
Phys. Rev. B
79
,
161309
(
2009
).
8.
F.
Jiang
,
Y. H.
Yan
,
S. K.
Wang
, and
Y. J.
Yan
,
Phys. Lett. A
380
,
942
(
2016
).
9.
L. L.
Zhou
,
S. S.
Li
,
J. N.
Wei
, and
S. Q.
Wang
,
Phys. Rev. B
83
,
195303
(
2011
).
10.
Q.
Chen
,
M. C.
Xu
, and
X. L.
Qu
,
Commun. Theor. Phys.
58
,
295
(
2012
).
11.
F.
Chi
,
J.
Zheng
,
Y. S.
Liu
, and
Y.
Guo
,
Appl. Phys. Lett.
100
,
233106
(
2012
).
12.
G. T.
Craven
,
D. H.
He
, and
A.
Nitzan
,
Phys. Rev. Lett.
121
,
247704
(
2018
).
13.
L. L.
Zhou
,
Y. J.
Li
, and
H.
Hu
,
Chin. Phys. Lett.
31
,
068501
(
2014
).
14.
Q.
Wang
,
H. Q.
Xie
,
H. J.
Jiao
, and
Y. H.
Nie
,
Eur. Phys. Lett.
101
,
47008
(
2013
).
15.
L. L.
Zhou
,
X. Y.
Zhou
, and
F. T.
Yang
,
Phys. Lett. A
381
,
334
(
2017
).
16.
F.
Jiang
,
Y. H.
Yan
,
S. K.
Wang
, and
Y. J.
Yan
,
Phys. Lett. A
381
,
3831
(
2017
).
17.
F.
Jiang
,
Y. H.
Yan
,
S. K.
Wang
, and
Y. J.
Yan
,
J. Appl. Phys.
126
,
195101
(
2019
).
18.
F.
Jiang
,
G. W.
Zhai
,
Y. Y.
Zhu
,
Y. H.
Yan
, and
S. K.
Wang
,
Phys. Lett. A
393
,
127168
(
2021
).
19.
B.
Göhler
,
V.
Hamelbeck
,
T. Z.
Markus
,
M.
Kettner
,
G. F.
Hanne
,
Z.
Vager
,
R.
Naaman
, and
H.
Zacharias
,
Science
331
,
894
(
2011
).
20.
Z.
Xie
,
T. Z.
Markus
,
S. R.
Cohen
,
Z.
Vager
,
R.
Gutierrez
, and
R.
Naaman
,
Nano Lett.
11
,
4652
(
2011
).
21.
A. M.
Guo
and
Q. F.
Sun
,
Phys. Rev. Lett.
108
,
218102
(
2012
).
22.
A. M.
Guo
and
Q. F.
Sun
,
Phys. Rev. B
86
,
035424
(
2012
).
23.
A. M.
Guo
and
Q. F.
Sun
,
Phys. Rev. B
86
,
115441
(
2012
).
24.
K. S.
Kumar
,
N.
Kantor-Uriel
,
S. P.
Mathew
,
R.
Guliamov
, and
R.
Naaman
,
Phys. Chem. Chem. Phys.
15
,
18357
(
2013
).
25.
O.
Ben Dor
,
S.
Yochelis
,
S. P.
Mathew
,
R.
Naaman
, and
Y.
Paltiel
,
Nat. Commun.
4
,
2256
(
2013
).
26.
H.
Simchi
,
M.
Esmaeilzadeh
, and
H.
Mazidabadi
,
J. Appl. Phys.
115
,
204701
(
2014
).
27.
A. M.
Guo
and
Q. F.
Sun
,
Proc. Natl. Acad. Sci. U.S.A.
111
,
11658
(
2014
).
28.
A. M.
Guo
,
E.
Díaz
,
C.
Gaul
,
R.
Gutierrez
,
F.
Domínguez-Adame
,
G.
Cuniberti
, and
Q. F.
Sun
,
Phys. Rev. B
89
,
205434
(
2014
).
29.
T. R.
Pan
,
A. M.
Guo
, and
Q. F.
Sun
,
Phys. Rev. B
92
,
115418
(
2015
).
30.
A. M.
Guo
,
T. R.
Pan
,
T. F.
Fang
,
X. C.
Xie
, and
Q. F.
Sun
,
Phys. Rev. B
94
,
165409
(
2016
).
31.
T. R.
Pan
,
A. M.
Guo
, and
Q. F.
Sun
,
Phys. Rev. B
94
,
235448
(
2016
).
32.
X.
Wang
,
Y.
Yang
,
H. N.
Wu
, and
W. J.
Gong
,
Appl. Phys. Lett.
111
,
063701
(
2017
).
33.
L. L.
Nian
,
R.
Zhang
,
F. R.
Tang
,
J.
Tang
, and
L.
Bai
,
J. Appl. Phys.
123
,
094302
(
2018
).
34.
L. L.
Nian
,
W.
Liu
,
L.
Bai
, and
X. F.
Wang
,
Phys. Rev. B
99
,
195430
(
2019
).
35.
L. L.
Nian
,
L.
Bai
,
W. T.
Yu
,
J.
Tang
,
H. C.
Li
,
R.
Zhang
,
R. Q.
Wang
,
X. F.
Wang
, and
M.
Wierzbicki
,
Phys. Rev. Appl.
12
,
024025
(
2019
).
36.
G. F.
Du
,
H. H.
Fu
, and
R. Q.
Wu
,
Phys. Rev. B
102
,
035431
(
2020
).
37.
Y.
Utsumi
,
O.
Wohlman
, and
A.
Aharony
,
Phys. Rev. B
102
,
035445
(
2020
).
38.
P. J.
Hu
,
S. X.
Wang
,
X. H.
Gao
,
Y. Y.
Zhang
,
T. F.
Fang
,
A. M.
Guo
, and
Q. F.
Sun
,
Phys. Rev. B
102
,
195406
(
2020
).
39.
L. L.
Zhang
,
Y. Y.
Hao
,
W.
Qin
,
S. J.
Xie
, and
F. Y.
Qu
,
Phys. Rev. B
102
,
214303
(
2020
).
40.
D. H.
Waldeck
,
R.
Naaman
, and
Y.
Paltiel
,
APL Mater.
9
,
040902
(
2021
).
41.
S.
Sarkar
and
S. K.
Maiti
,
ChemPhysChem
23
,
e202200485
(
2022
).
42.
S.
Sarkar
and
S. K.
Maiti
,
J. Phys.: Condens. Matter
34
,
455304
(
2022
).
43.
G.
Zhai
,
Y.
Zhu
,
F.
Jiang
,
Y.
Yan
, and
S.
Wang
,
J. Phys.: Condens. Matter
34
,
475301
(
2022
).
44.
P. J.
Hu
,
T. F.
Fang
,
A. M.
Guo
, and
Q. F.
Sun
,
Appl. Phys. Lett.
121
,
154102
(
2022
).
45.
L.
Deng
,
I. H.
Bhat
, and
A. M.
Guo
,
J. Chem. Phys.
158
,
244116
(
2023
).
46.
F.
Kuemmeth
,
S.
Ilani
,
D. C.
Ralph
, and
P. L.
McEuen
,
Nature
452
,
448
(
2008
).
47.
48.
R.
Streubel
,
P.
Fischer
,
F.
Kronast
,
V. P.
Kravchuk
,
D. D.
Sheka
,
Y.
Gaididei
,
O. G.
Schmidt
, and
D.
Makarov
,
J. Phys. D: Appl. Phys.
49
,
363001
(
2016
).
49.
O. M.
Volkov
,
D. D.
Sheka
,
Y.
Gaididei
,
V. P.
Kravchuk
,
U. K.
Rößler
,
J.
Fassbender
, and
D.
Makarov
,
Sci. Rep.
8
,
866
(
2018
).
50.
O. M.
Volkov
,
U. K.
Rößler
,
J.
Fassbender
, and
D.
Makarov
,
J. Phys. D: Appl. Phys.
52
,
345001
(
2019
).
51.
O. M.
Volkov
,
A.
Kákay
,
F.
Kronast
,
I.
Mönch
,
M. A.
Mawass
,
J.
Fassbender
, and
D.
Makarov
,
Phys. Rev. Lett.
123
,
077201
(
2019
).
52.
D.
Sanz-Hernández
et al.,
ACS Nano
14
,
8084
(
2020
).
53.
Q. F.
Sun
,
J.
Wang
, and
H.
Guo
,
Phys. Rev. B
71
,
165310
(
2005
).
54.
H. Z.
Lu
,
R.
, and
B. F.
Zhu
,
Phys. Rev. B
71
,
235320
(
2005
).
55.
F.
Jiang
,
J. S.
Jin
,
S. K.
Wang
, and
Y. J.
Yan
,
Phys. Rev. B
85
,
245427
(
2012
).
56.
H.
Haug
and
A. P.
Jauho
,
Quantum Kinetics in Transport and Optics of Semiconductors
(
Springer
,
Berlin
,
2008
).
57.
T.
Frederiksen
,
M.
Paulsson
,
M.
Brandbyge
, and
A. P.
Jauho
,
Phys. Rev. B
75
,
205413
(
2007
).
58.
W.
Pei
and
Q. F.
Sun
,
J. Appl. Phys.
112
,
124306
(
2012
).
59.
W.
Pei
,
X. C.
Xie
, and
Q.-f.
Sun
,
J. Phys.: Condens. Matter
24
,
415302
(
2012
).
60.
Q.
Chen
,
L. M.
Tang
,
K. Q.
Chen
, and
H. K.
Zhao
,
J. Appl. Phys.
114
,
084301
(
2013
).
61.
Q.
Chen
,
L. L.
Zhao
,
Z. Y.
Wang
, and
Z. X.
Xie
,
J. Low Temp. Phys.
174
,
311
(
2014
).
62.
Q.
Cheng
and
Q. F.
Sun
,
Phys. Rev. B
107
,
184511
(
2023
).
You do not currently have access to this content.