As the main merits, self-stabilization and no magnetic resistance make the high-temperature superconducting (HTS) magnetic levitation technology a crucial area for high-speed magnetic levitation development. To guarantee a stable operation of superconducting magnetic levitation systems, the dynamic characteristics of superconducting bulk materials occupy a significant place. However, in the previous research, there is still a lack of a simulation method that can describe 6 degree of freedom (DOF) motion of the superconductor. In this paper, an electromagnetic–thermal–dynamic coupling calculation model was established first. Then, the damping characteristics of 5-DOF superconducting levitation were experimentally tested, and the response analysis of the superconductor under 1–20 Hz excitation was carried out to explore the coupled motion relationship between the various degrees of freedom of the superconductor. In addition to the above, the operating conditions and primary resonance intervals that should be avoided by the HTS maglev system were identified. Additionally, a numerical simulation was conducted to investigate the dynamic response of the HTS maglev system under impact loads. All in all, this study explored the temperature rise conditions of superconducting bulk materials under excitation force through magnetic-thermal-force multi-physics coupling research. This 6-DOF model can provide a comprehensive simulation method for superconducting maglev systems in superconductor's motion behavior, attitude, and thermal state monitoring.

1.
J. S.
Wang
,
S. Y.
Wang
,
Y. W.
Zeng
,
H. Y.
Huang
,
L.
Fang
,
Z. P.
Xu
,
Q. X.
Tang
,
G. B.
Lin
,
C. F.
Zhang
,
Z. Y.
Ren
,
G. M.
Zhao
,
D. G.
Zhu
,
S. H.
Wang
,
H.
Jiang
,
M.
Zhu
,
C. Y.
Deng
,
P. F.
Hu
,
C. Y.
Li
,
F.
Liu
,
J. S.
Lian
, and
X. G.
Dong
, “
The first man-loading high temperature superconducting maglev test vehicle in the world
,”
Physica C Supercond.
378 381
,
809
814
(
2002
).
2.
K. L.
Kovalev
,
M. A.
Koneev
, and
V. N.
Poltavec
, “
Magnetically levitated high-speed carriages on the basis of bulk HTS elements
,” in
Proceedings of the 8th International Symposium on Magnetic Suspension Technology
,
Dresden
, 2005.
3.
L.
Schultz
,
O.
De Haas
,
P.
Verges
,
C.
Beyer
,
S.
Rohlig
,
H.
Olsen
,
L.
Kuhn
,
D.
Berger
,
U.
Noteboom
, and
U.
Funk
, “
Superconductively levitated transport system—The SupraTrans project
,”
IEEE Trans. Appl. Supercond.
15
,
2301
2305
(
2005
).
4.
M.
Okano
,
T.
Iwamoto
,
M.
Furuse
,
S.
Fuchino
, and
I.
Ishii
, “
Running performance of a pinning-type superconducting magnetic levitation guide
,”
J. Phys.: Conf. Ser.
43
,
999
1002
(
2006
).
5.
G.
D’Ovidio
,
F.
Crisi
, and
G.
Lanzara
, “
A ‘V’ shaped superconducting levitation module for lift and guidance of a magnetic transportation system
,”
Phys. C: Supercond. Appl.
468
,
1036
1040
(
2008
).
6.
Z. G.
Deng
,
W. H.
Zhang
,
J.
Zheng
,
Y.
Ren
,
D. H.
Jiang
,
X. X.
Zheng
,
J. H.
Zhang
,
P. F.
Gao
,
Q. X.
Lin
,
B.
Song
, and
C. Y.
Deng
. “
A high temperature superconducting maglev ring test line developed in Chengdu, China
,”
IEEE Trans. Appl. Supercond.
26
,
3602408
(
2016
).
7.
G. G.
Sotelo
,
R. A. H.
De Oliveira
,
F. S.
Costa
,
D. H. N.
Dias
,
R.
de Andrade
, and
R. M.
Stephan
, “
A full scale superconducting magnetic levitation (maglev) vehicle operational line
,”
IEEE Trans. Appl. Supercond.
25
,
3601005
(
2015
).
8.
Z. G.
Deng
,
W. H.
Zhang
,
J.
Zheng
, B. Wang, Y. Ren, X. X. Zheng, and J. H. Zhang, “
A high-temperature superconducting maglev-evacuated tube transport (HTS Maglev-ETT) test system
,”
IEEE Trans. Appl. Supercond.
27
, 3602008 (
2017
).
9.
C.
Zhao
,
M. D.
Ainslie
, and
Y.
Xin
, “
Electromagnetic and levitation characteristics of a high-temperature superconducting bulk above an electromagnet guideway
,”
IEEE Access
8
,
195425
195435
(
2020
).
10.
Y.
Wang
,
M. D.
Ainslie
,
D.
Zhou
,
Y.
Zhang
,
C.
Cai
,
J. H.
Durrell
, and
D. A.
Cardwell
, “
Pulsed field magnetization of a rectangular Y–Ba–Cu–O bulk, single grain superconductor assembly
,”
Supercond. Sci. Technol.
36
,
075006
(
2023
).
11.
K.
Ozturk
,
S. B.
Guner
,
M.
Abdioglu
,
M.
Demirci
,
S.
Celik
, and
A.
Cansiz
, “
An analysis on the relation between the seed distance and vertical levitation force for the multi seeded YBCO using the modified advanced frozen image (MAFI) and experimental methods
,”
J. Alloys Compd.
805
,
1208
1216
(
2019
).
12.
A.
Hekmati
and
H.
Mafi
, “
Impact of magnetization angles in permanent magnet guideways on high-temperature superconductors' levitation
,”
IEEE Trans. Magn.
52
, 9000209 (
2016
).
13.
J. X.
Jin
,
G.
Sheng
,
Y. F.
Bi
,
Y. T.
Song
,
X. L.
Liu
,
X.
Chen
,
Q.
Li
,
Z. G.
Deng
,
W. H.
Zhang
,
J.
Zheng
,
T.
Coombs
,
B. Y.
Shen
,
J. M.
Zhu
,
Y.
Zhao
,
J. H.
Wang
,
B.
Xiang
,
Y. J.
Tang
,
L.
Ren
,
Y.
Xu
, and
J.
Shi
, “
Applied superconductivity and electromagnetic devices-principles and current exploration highlights
,”
IEEE Trans. Appl. Supercond.
31
,
7000529
(
2021
).
14.
F. C.
Moon
, “
Chaotic vibrations of a magnet near a superconductor
,”
Phys. Lett. A.
132
,
249
252
(
1988
).
15.
T.
Hikihara
and
F. C.
Moon
, “
Chaotic levitated motion of a magnet supported by superconductor
,”
Phys. Lett. A.
191
,
279
284
(
1994
).
16.
T.
Hikihara
, “
Levitation drift of a magnet supported by a high-Tc superconductor under vibration
,”
Physica C Supercond.
250
, 121–127 (
1995
).
17.
T.
Hikihara
,
T.
Fujinami
, and
F. C.
Moon
, “
Bifurcation and multifractal vibration in dynamics of a high-Tc superconducting levitation system
,”
Phys. Lett. A.
231
,
217
223
(
1997
).
18.
H.
Teshima
,
M.
Tanaka
,
K.
Miyamoto
,
K.
Nohguchi
, and
K.
Hinata
, “
Vibrational properties in superconducting levitation using melt-processed YBaCuO bulk superconductors
,”
Phys. C: Supercond.
256
,
142
148
(
1996
).
19.
H.
Teshima
,
M.
Tanaka
,
K.
Miyamoto
,
K.
Nohguchi
, and
K.
Hinata
, “
Effect of eddy current dampers on the vibrational properties in superconducting levitation using melt-processed YBaCuO bulk superconductors
,”
Phys. C: Supercond.
274
,
17
23
(
1997
).
20.
B. R.
Weinberger
, “
Magnetic bearings using high-temperature superconductors: some practical considerations
,”
Supercond. Sci. Technol.
3
,
381
388
(
1990
).
21.
A. N.
Terentiev
,
H. J.
Lee
,
C.-J.
Kim
, and
G. W.
Hong
, “
Identification of magnet and superconductor contributions to the AC loss in a magnet-superconductor levitation system
,”
Phys. C: Supercond.
290
,
291
296
(
1997
).
22.
A. N.
Terentiev
,
J. R.
Hull
, and
L. E.
De Long
, “
Flux line depinning in a magnet-superconductor levitation system
,”
Phys. C: Supercond.
341 348
,
1289
1290
(
2000
).
23.
T. A.
Coombs
and
A. M.
Campbell
, “
Gap decay in superconducting magnetic bearings under the influence of vibrations
,”
Phys. C: Supercond.
256
,
298
302
(
1996
).
24.
W. J.
Yang
,
Y.
Liu
,
Z.
Wen
,
X.
Chen
, and
Y.
Duan
, “
Hysteresis force loss and damping properties in a practical magnet–superconductor maglev test vehicle
,”
Supercond. Sci. Technol.
21
,
015014
(
2008
).
25.
Z.
Wen
,
Y.
Liu
,
W.
Yang
, and
M.
Qiu
, “
Experimental and numerical analysis of vibration stability for a high-Tc superconducting levitation system
,”
Supercond. Sci. Technol.
20
,
100
104
(
2007
).
26.
Y.
Huang
,
X.
Zhang
, and
Y.-H.
Zhou
, “
Thermal properties of a cylindrical YBa2Cu3Ox superconductor in a levitation system: Triggered by nonlinear dynamics
,”
Supercond. Sci. Technol.
29
,
075009
(
2016
).
27.
X.
Zhang
,
Y.
Huang
,
J.
Zhou
, and
Y.
Zhou
, “
Experimental and theoretical investigations on the singularity of the intensity factor of the current in high temperature superconductors
,”
Supercond. Sci. Technol.
26
,
085012
(
2013
).
28.
J. P.
Li
,
Z. G.
Deng
,
C. C.
Xia
,
Y. J.
Gou
,
C. H.
Wang
, and
J.
Zheng
, “
Subharmonic resonance in magnetic levitation of the high-temperature superconducting bulks YBa2Cu3O7 under harmonic excitation
,”
IEEE Trans. Appl. Supercond.
29
,
3600908
(
2019
).
29.
J.
Li
,
H.
Li
,
J.
Zheng
,
B.
Zheng
,
H.
Huang
, and
Z.
Deng
, “
Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field
,”
J. Appl. Phys.
121
,
243901
(
2017
).
30.
H.
Li
,
Z.
Deng
,
L.
Jin
,
J.
Li
,
Y.
Li
, and
J.
Zheng
, “
Lateral motion stability of high-temperature superconducting maglev systems derived from a nonlinear guidance-force hysteretic model
,”
Supercond. Sci. Technol.
31
,
075010
(
2018
).
31.
J.
Zheng
,
Z. G.
Deng
,
L. L.
Wang
,
L.
Liu
,
Y.
Zhang
,
S. Y.
Wang
, and
J. S.
Wang
, “
Stability of the Maglev vehicle model using bulk high-Tc superconductors at low speed
,”
IEEE Trans. Appl. Supercond.
17
(2),
2103
2106
(
2007
).
32.
W. Y.
Lei
,
N.
Qian
,
J.
Zheng
,
L. W.
Jin
,
Y.
Zhang
, and
Z. G.
Deng
, “
Dynamic motion modes of high temperature superconducting maglev on a 45-m long ring test line
,”
Int. J. Mod. Phys. B.
31
(
25
),
1745021
(
2017
).
33.
G.
Lanzara
and
G.
D’Ovidio
, “
Characterization method of the V-shaped high-temperature superconducting maglev module for transport system applications
,”
J. Supercond. Novel Magn.
35
,
1071
1078
(
2022
).
34.
C. G.
Huang
,
X.
Bin
, and
Y. H.
Zhou
, “
Dynamic simulations of actual superconducting maglev systems considering thermal and rotational effects
,”
Supercond. Sci. Technol.
32
,
045002
(
2019
).
35.
W.
Hong
,
Y.
Xin
,
C.
Wang
, and
N.
Li
, “
A quasi-static measurement method for analyzing the lateral disturbance of HTS maglev
,”
IEEE Trans. Instrum. Meas.
71
,
7501709
(
2022
).
36.
F.
Grilli
, “
Numerical modeling of HTS applications
,”
IEEE Trans. Appl. Supercond.
26
, 0500408 (
2016
).
37.
K.
Miya
and
H.
Hashizume
, “
Application of T-method to AC problem based on boundary element method
,”
IEEE Trans. Magn.
24
,
134
137
(
1988
).
38.
A.
Alexandre
,
F. Sirois
Frederic
, and
F.
Grilli
, “
Efficient modeling of high-temperature superconductors surrounded by magnetic components using a reduced H-φ formulation
,”
IEEE Trans. Appl. Supercond.
31
, 6800609 (
2021
).
39.
L.
Lai
and
C.
Gu
, “
AC loss calculation in REBCO coils or stacks by solving the equation of motion for current using an integration approach
,”
Supercond. Sci. Technol.
34
,
015003
(
2021
).
40.
A.
Patel
,
S. C.
Hopkins
,
A.
Baskys
,
V.
Kalitka
,
A.
Molodyk
, and
B. A.
Glowacki
, “
Magnetic levitation using high temperature superconducting pancake coils as composite bulk cylinders
,”
Supercond. Sci. Technol.
28
,
115007
(
2015
).
41.
H.
Fujishiro
,
M.
Ikebe
,
T.
Naito
, and
K.
Noto
, “
Phonon thermal diffusivity and conductivity of oxygen deficient YBa2Cu3O7−X
,”
Phys. C: Supercond.
235 240
,
825
826
(
1994
).
42.
D.
Varshney
,
K. K.
Choudhary
, and
R. K.
Singh
, “
Analysis of in-plane thermal conductivity anomalies in YBa2Cu3O7−δ cuprate superconductors
,”
New J. Phys.
5
,
72
(
2003
).
43.
W.
Lei
,
J.
Zheng
,
Z.
Huang
,
W.
Zhang
, and
Z.
Deng
, “
Study of long-time levitation performance of high temperature superconducting maglev under vertical vibration
,”
Phys. C: Supercond. Appl.
600
,
1354099
(
2022
).
You do not currently have access to this content.