Ferrimagnetic antiperovskite Mn 4N has received growing interest due to room-temperature observation of large perpendicular magnetic anisotropy, low saturation magnetization, and ultrafast response to external magnetic fields. Comprehensive understanding of the underlying magnetic structure is instrumental in design and fabrication of computer memory and logic devices. Magneto-optical spectroscopy provides deeper insight into the magnetic and electronic structure than magnetometry. Simulations of a magneto-optical Kerr effect in biaxially strained Mn 4N are performed using density functional theory and linear response theory. We consider three ferrimagnetic phases, two collinear and one noncollinear, which have been investigated separately by earlier studies. The simulated spectra are compared to measured magneto-optical data available in recent literature. One of the collinear ferrimagnetic phases is found to be consistent with the measured spectra. We show that an admixture of the noncollinear phase, which is the ground state of unstrained Mn 4N, further improves the agreement with measured spectra, and at the same time, it could explain the lower than predicted net moment and magnetic anisotropy observed in thin films on various substrates.

1.
P.
Chaudhari
,
J.
Cuomo
, and
R.
Gambino
, “
Amorphous metallic films for magneto-optic applications
,”
Appl. Phys. Lett.
22
,
337
339
(
1973
).
2.
R.
Carey
,
D.
Newman
, and
B.
Thomas
, “
Magneto-optic recording
,”
J. Phys. D: Appl. Phys.
28
,
2207
(
1995
).
3.
P.
Hansen
,
C.
Clausen
,
G.
Much
,
M.
Rosenkranz
, and
K.
Witter
, “
Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Gd, Tb, Fe, Co
,”
J. Appl. Phys.
66
,
756
767
(
1989
).
4.
T.
Suemasu
,
L.
Vila
, and
J. P.
Attané
, “
Present status of rare-earth free ferrimagnet Mn 4N and future prospects of Mn 4N-based compensated ferrimagnets
,”
J. Phys. Soc. Jpn.
90
,
081010
(
2021
).
5.
S. K.
Kim
,
G. S.
Beach
,
K.-J.
Lee
,
T.
Ono
,
T.
Rasing
, and
H.
Yang
, “
Ferrimagnetic spintronics
,”
Nat. Mater.
21
,
24
34
(
2022
).
6.
H.-A.
Zhou
,
T.
Xu
,
H.
Bai
, and
W.
Jiang
, “
Efficient spintronics with fully compensated ferrimagnets
,”
J. Phys. Soc. Jpn.
90
,
081006
(
2021
).
7.
S. A.
Siddiqui
,
J.
Han
,
J. T.
Finley
,
C. A.
Ross
, and
L.
Liu
, “
Current-induced domain wall motion in a compensated ferrimagnet
,”
Phys. Rev. Lett.
121
,
057701
(
2018
).
8.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
, “
Antiferromagnetic spintronics
,”
Nat. Nanotechnol.
11
,
231
241
(
2016
).
9.
J.
Železnỳ
,
P.
Wadley
,
K.
Olejník
,
A.
Hoffmann
, and
H.
Ohno
, “
Spin transport and spin torque in antiferromagnetic devices
,”
Nat. Phys.
14
,
220
228
(
2018
).
10.
V.
Baltz
,
A.
Manchon
,
M.
Tsoi
,
T.
Moriyama
,
T.
Ono
, and
Y.
Tserkovnyak
, “
Antiferromagnetic spintronics
,”
Rev. Mod. Phys.
90
,
015005
(
2018
).
11.
S.
Tsunashima
, “
Magneto-optical recording
,”
J. Phys. D: Appl. Phys.
34
,
R87
(
2001
).
12.
D.
Fruchart
,
E.
Bertaut
,
J.
Sénateur
, and
R.
Fruchart
, “
Magnetic studies on the metallic perovskite-type compound Mn 3SnN
,”
J. Phys. Lett.
38
,
21
23
(
1977
).
13.
D.
Fruchart
and
F.
Bertaut
, “
Magnetic studies of the metallic perovskite-type compounds of manganese
,”
J. Phys. Soc. Jpn.
44
,
781
791
(
1978
).
14.
D.
Fruchart
,
D.
Givord
,
P.
Convert
,
P.
l’Heritier
, and
J.
Senateur
, “
The non-collinear component in the magnetic structure of Mn 4N
,”
J. Phys. F: Met. Phys.
9
,
2431
(
1979
).
15.
G.
Gurung
,
D.-F.
Shao
,
T. R.
Paudel
, and
E. Y.
Tsymbal
, “
Anomalous Hall conductivity of noncollinear magnetic antiperovskites
,”
Phys. Rev. Mater.
3
,
044409
(
2019
).
16.
D.
Boldrin
,
I.
Samathrakis
,
J.
Zemen
,
A.
Mihai
,
B.
Zou
,
F.
Johnson
,
B. D.
Esser
,
D. W.
McComb
,
P. K.
Petrov
,
H.
Zhang
, and
H.
Cohen
, “
Anomalous Hall effect in noncollinear antiferromagnetic Mn 3NiN thin films
,”
Phys. Rev. Mater.
3
,
094409
(
2019
).
17.
F.
Johnson
,
J.
Kimák
,
J.
Zemen
,
Z.
Šobáň
,
E.
Schmoranzerová
,
J.
Godinho
,
P.
Němec
,
S.
Beckert
,
H.
Reichlová
,
D.
Boldrin
,
J.
Wunderlich
, and
L. F.
Cohen
, “
Identifying the octupole antiferromagnetic domain orientation in Mn 3NiN by scanning anomalous nernst effect microscopy
,”
Appl. Phys. Lett.
120
,
232402
(
2022
).
18.
D.
Matsunami
,
A.
Fujita
,
K.
Takenaka
, and
M.
Kano
, “
Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn 3GaN
,”
Nat. Mater.
14
,
73
78
(
2015
).
19.
D.
Boldrin
,
E.
Mendive-Tapia
,
J.
Zemen
,
J. B.
Staunton
,
T.
Hansen
,
A.
Aznar
,
J.-L.
Tamarit
,
M.
Barrio
,
P.
Lloveras
,
J.
Kim
,
X.
Moya
, and
L. F.
Cohen
, “
Multisite exchange-enhanced barocaloric response in Mn 3NiN
,”
Phys. Rev. X
8
,
041035
(
2018
).
20.
D.
Boldrin
,
E.
Mendive-Tapia
,
J.
Zemen
,
J. B.
Staunton
,
A. M.
Gomes
,
L.
Ghivelder
,
J.
Halpin
,
A. S.
Gibbs
,
A.
Aznar
,
J.-L.
Tamarit
et al., “
Barocaloric properties of quaternary Mn 3(Zn, In)N for room-temperature refrigeration applications
,”
Phys. Rev. B
104
,
134101
(
2021
).
21.
M.
Wu
,
C.
Wang
,
Y.
Sun
,
L.
Chu
,
J.
Yan
,
D.
Chen
,
Q.
Huang
, and
J. W.
Lynn
, “
Magnetic structure and lattice contraction in Mn 3NiN
,”
J. Appl. Phys.
114
,
123902
(
2013
).
22.
H. K.
Singh
,
I.
Samathrakis
,
N. M.
Fortunato
,
J.
Zemen
,
C.
Shen
,
O.
Gutfleisch
, and
H.
Zhang
, “
Multifunctional antiperovskites driven by strong magnetostructural coupling
,”
npj Comput. Mater.
7
,
98
(
2021
).
23.
D.
Boldrin
,
F.
Johnson
,
R.
Thompson
,
A. P.
Mihai
,
B.
Zou
,
J.
Zemen
,
J.
Griffiths
,
P.
Gubeljak
,
K. L.
Ormandy
,
P.
Manuel
et al., “
The biaxial strain dependence of magnetic order in spin frustrated Mn 3NiN thin films
,”
Adv. Funct. Mater.
29
,
1902502
(
2019
).
24.
J.
Zemen
,
E.
Mendive-Tapia
,
Z.
Gercsi
,
R.
Banerjee
,
J.
Staunton
, and
K.
Sandeman
, “
Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory
,”
Phys. Rev. B
95
,
184438
(
2017
).
25.
F.
Johnson
,
J.
Zázvorka
,
L.
Beran
,
D.
Boldrin
,
L.
Cohen
,
J.
Zemen
, and
M.
Veis
, “
Room-temperature weak collinear ferrimagnet with symmetry-driven large intrinsic magneto-optic signatures
,”
Phys. Rev. B
107
,
014404
(
2023
).
26.
Y.
Yasutomi
,
K.
Ito
,
T.
Sanai
,
K.
Toko
, and
T.
Suemasu
, “
Perpendicular magnetic anisotropy of Mn 4N films on MgO(001) and SrTiO 3(001) substrates
,”
J. Appl. Phys.
115
,
17A935
(
2014
).
27.
X.
Shen
,
A.
Chikamatsu
,
K.
Shigematsu
,
Y.
Hirose
,
T.
Fukumura
, and
T.
Hasegawa
, “
Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn 4N epitaxial thin film
,”
Appl. Phys. Lett.
105
,
072410
(
2014
).
28.
K.
Ito
,
Y.
Yasutomi
,
K.
Kabara
,
T.
Gushi
,
S.
Higashikozono
,
K.
Toko
,
M.
Tsunoda
, and
T.
Suemasu
, “
Perpendicular magnetic anisotropy in Co xMn 4 xN (x = 0 and 0.2) epitaxial films and possibility of tetragonal Mn 4N phase
,”
AIP Adv.
6
,
056201
(
2016
).
29.
T.
Gushi
,
M.
Jovičević Klug
,
J.
Pena Garcia
,
S.
Ghosh
,
J. P.
Attane
,
H.
Okuno
,
O.
Fruchart
,
J.
Vogel
,
T.
Suemasu
,
S.
Pizzini
, and
L.
Vila
, “
Large current driven domain wall mobility and gate tuning of coercivity in ferrimagnetic Mn 4N thin films
,”
Nano Lett.
19
,
8716
8723
(
2019
).
30.
T.
Hirose
,
T.
Komori
,
T.
Gushi
,
A.
Anzai
,
K.
Toko
, and
T.
Suemasu
, “
Strong correlation between uniaxial magnetic anisotropic constant and in-plane tensile strain in Mn 4N epitaxial films
,”
AIP Adv.
10
,
025117
(
2020
).
31.
T.
Bayaraa
,
C.
Xu
, and
L.
Bellaiche
, “
Magnetization compensation temperature and frustration-induced topological defects in ferrimagnetic antiperovskite Mn 4N
,”
Phys. Rev. Lett.
127
,
217204
(
2021
).
32.
W.
Zhou
,
C. T.
Ma
,
T. Q.
Hartnett
,
P. V.
Balachandran
, and
S. J.
Poon
, “
Rare-earth-free ferrimagnetic Mn 4N sub-20 nm thin films as potential high-temperature spintronic material
,”
AIP Adv.
11
,
015334
(
2021
).
33.
S.
Isogami
,
M.
Ohtake
,
Y.
Kozuka
, and
Y. K.
Takahashi
, “
Wide modulation of coercive fields in Mn 4N ferrimagnetic thin films caused dominantly by dislocation microstructures
,”
J. Magn. Magn. Mater.
560
,
169642
(
2022
).
34.
W.
Li
,
X.
Xu
,
T.
Gao
,
T.
Harumoto
,
Y.
Nakamura
, and
J.
Shi
, “
Enhanced perpendicular magnetic anisotropy of ferrimagnetic Mn 4N films deposited on the glass substrate
,”
J. Phys. D: Appl. Phys.
55
,
275004
(
2022
).
35.
Z. Y.
Zhang
,
J. W.
Jiang
,
X. H.
Shi
,
X.
Liu
,
X.
Chen
,
Z. P.
Hou
, and
W. B.
Mi
, “
Sign reversal and manipulation of anomalous Hall resistivity in facing-target sputtered Pt/Mn 4N bilayers
,”
Rare Metals
42
,
591
601
(
2023
).
36.
K.
Imamura
,
M.
Ohtake
,
S.
Isogami
,
M.
Futamoto
,
T.
Kawai
,
F.
Kirino
, and
N.
Inaba
, “
Introduction of VN underlayer and caplayer for preparation of Mn 4N(001) single-crystal thin film with perpendicular magnetic anisotropy
,”
AIP Adv.
13
,
025110
(
2023
).
37.
S.
Isogami
,
K.
Masuda
, and
Y.
Miura
, “
Contributions of magnetic structure and nitrogen to perpendicular magnetocrystalline anisotropy in antiperovskite Mn 4N
,”
Phys. Rev. Mater.
4
,
014406
(
2020
).
38.
K.-J.
Kim
,
S. K.
Kim
,
Y.
Hirata
,
S.-H.
Oh
,
T.
Tono
,
D.-H.
Kim
,
T.
Okuno
,
W. S.
Ham
,
S.
Kim
,
G.
Go
, “
Y.
Tserkovnyak
, “
A.
Tsukamoto
, “
T.
Moriyama
, “
K.-J.
Lee
, “
T.
Ono
, “
Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets
,”
Nat. Mater.
16
,
1187
(
2017
).
39.
L.
Caretta
,
M.
Mann
,
F.
Büttner
,
K.
Ueda
,
B.
Pfau
,
C. M.
Günther
,
P.
Hessing
,
A.
Churikova
,
C.
Klose
,
M.
Schneider
et al., “
Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet
,”
Nat. Nanotechnol.
13
,
1154
1160
(
2018
).
40.
S.
Isogami
and
Y. K.
Takahashi
, “
Antiperovskite magnetic materials with 2p light elements for future practical applications
,”
Adv. Electron. Mater.
9
,
2200515
(
2023
).
41.
W.
Takei
,
R.
Heikes
, and
G.
Shirane
, “
Magnetic structure of Mn 4N-type compounds
,”
Phys. Rev.
125
,
1893
(
1962
).
42.
K.
Kabara
and
M.
Tsunoda
, “
Perpendicular magnetic anisotropy of Mn 4N films fabricated by reactive sputtering method
,”
J. Appl. Phys.
117
,
17B512
(
2015
).
43.
A.
Foley
,
J.
Corbett
,
A.
Khan
,
A. L.
Richard
,
D. C.
Ingram
,
A. R.
Smith
,
L.
Zhao
,
J. C.
Gallagher
, and
F.
Yang
, “
Contribution from Ising domains overlapping out-of-plane to perpendicular magnetic anisotropy in Mn 4N thin films on MgO(001)
,”
J. Magn. Magn. Mater.
439
,
236
244
(
2017
).
44.
A.
Anzai
,
F.
Takata
,
T.
Gushi
,
K.
Toko
, and
T.
Suemasu
, “
Epitaxial growth and magnetic properties of Fe 4 xMn xN thin films grown on MgO(001) substrates by molecular beam epitaxy
,”
J. Cryst. Growth
489
,
20
23
(
2018
).
45.
T.
Gushi
,
L.
Vila
,
O.
Fruchart
,
A.
Marty
,
S.
Pizzini
,
J.
Vogel
,
F.
Takata
,
A.
Anzai
,
K.
Toko
,
T.
Suemasu
, and
J. P.
Attane
, “
Millimeter-sized magnetic domains in perpendicularly magnetized ferrimagnetic Mn 4N thin films grown on SrTiO 3
,”
Jpn. J. Appl. Phys.
57
,
120310
(
2018
).
46.
Y.
He
,
S.
Lenne
,
Z.
Gercsi
,
G.
Atcheson
,
J.
O’Brien
,
D.
Fruchart
,
K.
Rode
, and
J. M.
Coey
, “
Noncollinear ferrimagnetism and anomalous Hall effects in Mn 4N thin films
,”
Phys. Rev. B
106
,
L060409
(
2022
).
47.
W.
Li
,
R.
Tanaka
,
T.
Usami
,
T.
Gao
,
T.
Harumoto
,
Y.
Nakamura
, and
J.
Shi
, “
Growth of Mn 4N film with enhanced perpendicular magnetization on glass substrate using MnO seed layer
,”
Mater. Lett.
311
,
131615
(
2022
).
48.
Z.
Zhang
,
Q.
Zhang
, and
W.
Mi
, “
Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn 4N epitaxial films with perpendicular magnetic anisotropy
,”
Chin. Phys. B
31
,
047305
(
2022
).
49.
R.
Zhang
,
Y.
He
,
D.
Fruchart
,
J. M.
Coey
, and
Z.
Gercsi
, “
Rare-earth-free noncollinear metallic ferrimagnets Mn 4 xZ xN with compensation at room temperature
,”
Acta Mater.
234
,
118021
(
2022
).
50.
Z.
Gercsi
,
Y.
He
, and
J. D.
Coey
, “
Comment on “magnetization compensation temperature and frustration-induced topological defects in ferrimagnetic antiperovskite Mn 4N”
,”
Phys. Rev. Lett.
131
,
089701
(
2023
).
51.
H.
Abe
,
M.
Matsuura
,
A.
Hirai
,
J.
Haruna
, and
M.
Mekata
, “
Nuclear magnetic resonances of Mn 55 and N 14 in ferrimagnetic intermetallic Mn 4N–anisotropic and transferred hyperfine fields in intermetallic compound
,”
J. Phys. Soc. Jpn.
22
,
558
572
(
1967
).
52.
M.
Uhl
,
S. F.
Matar
, and
P.
Mohn
, “
Ab initio analysis of magnetic properties in noncollinearly orderedN
,”
Phys. Rev. B
55
,
2995
3002
(
1997
).
53.
T.
Yasuda
,
K.
Amemiya
, and
T.
Suemasu
, “
Growth of ultrathin Mn 4N epitaxial films on SrTiO 3 (001) and their thickness-dependent magnetic structures
,”
Appl. Phys. Lett.
123
,
122404
(
2023
).
54.
H.
Sakaguchi
,
S.
Isogami
,
M.
Niimi
, and
T.
Ishibashi
, “
Boron-induced magneto-optical Kerr spectra and dielectric tensors in ferrimagnetic (Mn 4N)B antiperovskite thin films
,”
J. Phys. D: Appl. Phys.
56
,
365002
(
2023
).
55.
G.
Wang
,
S.
Wu
,
P.
Hu
, and
S.
Li
, “
Magnetic properties and evidence of current-induced perpendicular field in epitaxial ferrimagnetic Mn 4N (002) film mixed with (111) phase
,”
J. Appl. Phys.
122
,
133905
(
2017
).
56.
W.
Feng
,
G.-Y.
Guo
,
J.
Zhou
,
Y.
Yao
, and
Q.
Niu
, “
Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn 3 X ( X = Rh, Ir, Pt)
,”
Phys. Rev. B
92
,
144426
(
2015
).
57.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
58.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
59.
M.
Veis
,
J.
Minár
,
G.
Steciuk
,
L.
Palatinus
,
C.
Rinaldi
,
M.
Cantoni
,
D.
Kriegner
,
K.
Tikuišis
,
J.
Hamrle
,
M.
Zahradník
et al., “
Band structure of CuMnAs probed by optical and photoemission spectroscopy
,”
Phys. Rev. B
97
,
125109
(
2018
).
60.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C.
Humphreys
, and
A. P.
Sutton
, “
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
,”
Phys. Rev. B
57
,
1505
(
1998
).
61.
T.
Higo
,
H.
Man
,
D. B.
Gopman
,
L.
Wu
,
T.
Koretsune
,
O. M.
van’t Erve
,
Y. P.
Kabanov
,
D.
Rees
,
Y.
Li
,
M.-T.
Suzuki
et al., “
Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal
,”
Nat. Photonics
12
,
73
78
(
2018
).
62.
H. T.
Stokes
and
D. M.
Hatch
, “
FINDSYM: Program for identifying the space-group symmetry of a crystal
,”
J. Appl. Crystallogr.
38
,
237
238
(
2005
).
63.
H. T.
Stokes
,
D. M.
Hatch
, and
B. J.
Campbell
, see iso.byu.edu for “FINDSYM.”
64.
J.
Železný
, “Linear response symmetry,” available at https://bitbucket.org/zeleznyj/linear-response-symmetry.
You do not currently have access to this content.