We investigate microlenses that selectively focus the light on only a small fraction of all nanowires within an arrayed InP nanowire solar cell. The nano-concentration improves both the short-circuit current ( J s c ) and the open-circuit voltage ( V o c ) of the solar cell. For this purpose, polymethyl methacrylate microlenses with 6 μm diameter were randomly positioned on top of an arrayed nanowire solar cell with 500 nm pitch. The microlenses were fabricated by first patterning cylindrical micropillars, which were subsequently shaped as lenses by using a thermal reflow process. The quality of the microlenses was experimentally assessed by Fourier microscopy showing strong collimation of the emitted photoluminescence. By analyzing the slope of the integrated photoluminescence vs excitation density, we deduce a substantial enhancement of the external radiative efficiency of a nanowire array by adding microlenses. The enhanced radiative efficiency of the lensed nanowire array results in a clear enhancement of the open-circuit voltage for a subset of our solar cells. The microlenses finally also allow to increase the short-circuit current of our relatively short nanowires, providing a route to significantly reduce the amount of expensive semiconductor material.

1.
W.
Shockley
and
H. J.
Queisser
, “
Detailed balance limit of efficiency of p-n junction solar cells
,”
J. Appl. Phys.
32
,
510
519
(
1961
).
2.
U.
Rau
,
U. W.
Paetzold
, and
T.
Kirchartz
, “
Thermodynamics of light management in photovoltaic devices
,”
Phys. Rev. B
90
,
035211
(
2014
).
3.
O. D.
Miller
,
E.
Yablonovitch
, and
S. R.
Kurtz
, “
Intense internal and external fluorescence as solar cell approach the SQ efficiency limit
,”
IEEE J. Photovoltaics
2
,
303
311
(
2012
).
4.
J. S.
Van Der Burgt
and
E. C.
Garnett
, “
Nanophotonic emission control for improved photovoltaic efficiency
,”
ACS Photonics
7
,
1589
1602
(
2020
).
5.
S. A.
Mann
,
R. R.
Grote
,
R. M.
Osgood
,
A.
Alù
, and
E. C.
Garnett
, “
Opportunities and limitations for nanophotonic structures to exceed the Shockley-Queisser limit
,”
ACS Nano
10
,
8620
8631
(
2016
).
6.
Y.
Cui
et al, “
Boosting solar cell photovoltage via nanophotonic engineering
,”
Nano Lett.
16
,
6467
6471
(
2016
).
7.
S. A.
Mann
et al, “
Quantifying losses and thermodynamic limits in nanophotonic solar cells
,”
Nat. Nanotechnol.
11
,
1071
1075
(
2016
).
8.
E.
Johlin
,
S. A.
Mann
,
S.
Kasture
,
A. F.
Koenderink
, and
E. C.
Garnett
, “
Broadband highly directive 3D nanophotonic lenses
,”
Nat. Commun.
9
, 4742 (
2018
).
9.
D.
Van Dam
et al, “
Directional and polarized emission from nanowire arrays
,”
Nano Lett.
15
,
4557
4563
(
2015
).
10.
K.
Korzun
,
G. W.
Castellanos
,
D. K. G.
de Boer
,
J.
Gómez Rivas
, and
J. E. M.
Haverkort
, “
Nanowire solar cell above the radiative limit
,”
Adv. Opt. Mater.
9
,
1
7
(
2021
).
11.
J. E. M.
Haverkort
,
E. C.
Garnett
, and
E. P. A. M.
Bakkers
, “
Fundamentals of the nanowire solar cell: Optimization of the open circuit voltage
,”
Appl. Phys. Rev.
5
(
1–22
),
031106
(
2018
).
12.
M.
Alves
,
A.
Pérez-rodríguez
,
P. J.
Dale
,
C.
Domínguez
, and
S.
Sadewasser
, “
Thin-film micro-concentrator solar cells
,”
J. Phys.: Energy
2
,
012001
(
2020
).
13.
E. D.
Kosten
,
B. K.
Newman
,
J. V.
Lloyd
,
A.
Polman
, and
H. A.
Atwater
, “
Limiting light escape angle in silicon photovoltaics: Ideal and realistic cells
,”
IEEE J. Photovoltaics
5
,
61
69
(
2015
).
14.
E. D.
Kosten
,
J. H.
Atwater
,
J.
Parsons
,
A.
Polman
, and
H. A.
Atwater
, “
Highly efficient GaAs solar cells by limiting light emission angle
,”
Light: Sci. Appl.
2
,
e45
(
2013
).
15.
G. L.
Araujo
and
A.
Marti
, “
Absolute limiting efficiencies for photovoltaic energy-conversion
,”
Sol. Energy Mater. Sol. Cells
33
,
213
240
(
1994
).
16.
A.
Martí
,
J. L.
Balenzategui
, and
R. F.
Reyna
, “
Photon recycling and Shockley’s diode equation
,”
J. Appl. Phys.
82
,
4067
4075
(
1997
).
17.
Y. S.
Yoo
,
T. M.
Roh
,
J. H.
Na
,
S. J.
Son
, and
Y. H.
Cho
, “
Simple analysis method for determining internal quantum efficiency and relative recombination ratios in light emitting diodes
,”
Appl. Phys. Lett.
102
,
211107
(
2013
).
18.
T. T. D.
Tran
et al, “
High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1 eV
,”
Nano Lett.
14
,
3235
3240
(
2014
).
19.
D.
Van Dam
et al, “
High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-Tin-oxide Mie scatterers
,”
ACS Nano
10
,
11414
11419
(
2016
).
20.
B.
Demory
et al, “
Integrated parabolic nanolenses on MicroLED color pixels
,”
Nanotechnology
29
,
165201
(
2018
).
21.
R.
Kirchner
,
A.
Schleunitz
, and
H.
Schift
, “
Energy-based thermal reflow simulation for 3D polymer shape prediction using surface evolver
,”
J. Micromech. Microeng.
24
,
055010
(
2014
).
22.
R.
Kirchner
and
H.
Schift
, “
Thermal reflow of polymers for innovative and smart 3D structures: A review
,”
Mater. Sci. Semicond. Process.
92
,
58
72
(
2019
).
23.
S.
Moore
et al, “
Experimental study of polymer microlens fabrication using partial-filling hot embossing technique
,”
Microelectron. Eng.
162
,
57
62
(
2016
).
24.
J. Y.
Kim
et al, “
Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique
,”
Opt. Mater. Express
1
,
259
(
2011
).
25.
S.
Lecler
,
Y.
Takakura
, and
P.
Meyrueis
, “
Properties of a three-dimensional photonic jet
,”
Opt. Lett.
30
,
2641
2643
(
2005
).
26.
G.
Grzela
et al, “
Nanowire antenna emission
,”
Nano Lett.
12
,
5481
5486
(
2012
).
27.
G.
Grzela
et al, “
Nanowire antenna absorption probed with time-reversed Fourier microscopy
,”
Nano Lett.
14
,
3227
3234
(
2014
).
28.
R.
Paniagua-Domínguez
,
G.
Grzela
,
J. G.
Rivas
, and
J. A.
Sánchez-Gil
, “
Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes
,”
Nanoscale
5
,
10582
10590
(
2013
).
29.
J. S.
Van Der Burgt
et al, “
Integrating sphere Fourier microscopy of highly directional emission
,”
ACS Photonics
8
,
1143
1151
(
2021
).
30.
S.
Rühle
, “
Tabulated values of the Shockley-Queisser limit for single junction solar cells
,”
Solar Energy
130
,
139
147
(
2016
).
31.
D. J.
Hill
,
T. S.
Teitsworth
,
E. T.
Ritchie
,
J. M.
Atkin
, and
J. F.
Cahoon
, “
Interplay of surface recombination and diode geometry for the performance of axial p-i-n nanowire solar cells
,”
ACS Nano
12
,
10554
10563
(
2018
).
32.
M. A.
Green
and
A. W. Y.
Ho-Baillie
, “
Pushing to the limit: Radiative efficiencies of recent mainstream and emerging solar cells
,”
ACS Energy Lett.
4
,
1639
1644
(
2019
).
33.
J.
Wallentin
et al, “
InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit
,”
Science
339
,
1057
1060
(
2013
).
34.
G.
Otnes
and
M. T.
Borgström
, “
Towards high efficiency nanowire solar cells
,”
Nano Today
12
,
31
45
(
2017
).
35.
M.
Borg
et al, “
Vertical III-V nanowire device integration on Si(100)
,”
Nano Lett.
14
, 1914–1920 (
2014
).
36.
Y.
Cui
et al, “
Efficiency enhancement of InP nanowire solar cells by surface cleaning
,”
Nano Lett.
13
,
4113
4117
(
2013
).
37.
I.
Aberg
et al, “
A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun
,”
IEEE J. Photovoltaics
6
,
185
190
(
2016
).
38.
A.
Mukherjee
et al, “
GaAs/AlGaAs nanowire array solar cell grown on Si with ultrahigh power-per-weight ratio
,”
ACS Photonics
8
,
2355
2366
(
2021
).
39.
T.
Mårtensson
et al, “
Epitaxial III-V nanowires on silicon
,”
Nano Lett.
4
,
1987
1990
(
2004
).
40.
C.
Tong
et al, “
GaAs/GaInP nanowire solar cell on Si with state-of-the-art Voc and quasi-Fermi level splitting
,”
Nanoscale
14
,
12722
12735
(
2022
).
41.
M.
Vettori
et al, “
Growth optimization and characterization of regular arrays of GaAs/AlGaAs core/shell nanowires for tandem solar cells on silicon
,”
Nanotechnology
30
, 084005 (
2019
).
42.
I.
Massiot
,
A.
Cattoni
, and
S.
Collin
, “
Progress and prospects for ultrathin solar cells
,”
Nat. Energy
5
,
959
972
(
2020
).
43.
H. L.
Chen
et al, “
A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror
,”
Nat. Energy
4
,
761
767
(
2019
).
44.
N.
Anttu
et al, “
Absorption of light in InP nanowire arrays
,”
Nano Res.
7
,
816
823
(
2014
).
45.
S. L.
Diedenhofen
,
O. T. A.
Janssen
,
G.
Grzela
,
E. P. A. M.
Bakkers
, and
J.
Gómez Rivas
, “
Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires
,”
ACS Nano
5
,
2316
2323
(
2011
).

Supplementary Material

You do not currently have access to this content.