Millimeter-thick methylammonium lead tribromide (MAPbBr3) single crystal x-ray detectors have recently raised attention due to their high x-ray attenuation efficiency and good charge transport properties. However, an intriguing feature of the photocurrent response of MAPbBr3 detectors has been largely overlooked in the literature. After biasing, transient sensitivity is measured under x rays at short-circuit (bias = 0 V), thus revealing a large remnant electric field that builds up under bias. Here, we exploit the x-ray sensitivity of MAPbBr3 detectors at zero-bias in order to probe the internal built-in field, as well as to investigate the charge transport properties of the perovskite material. Our model derived from the Hecht equation is able to fully rationalize the response of the detectors both at short-circuit and under moderate applied bias. Moreover, we provide a method for the estimation of the internal electric field, and for the sum of the electrons and holes mobility–lifetime products μ e τ e + μ h τ h. This general method could extend to any perovskite-based x-ray detector exhibiting transient sensitivity at zero-bias.

1.
H.
Wei
et al, “
Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals
,”
Nat. Photonics
10
(
5
),
333
339
(
2016
).
2.
W.
Wei
et al, “
Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging
,”
Nat. Photonics
11
(
5
),
315
321
(
2017
).
3.
X.
Wang
et al, “
PIN diodes array made of perovskite single crystal for X-ray imaging
,”
Phys. Status Solidi RRL
12
(
10
),
1800380
(
2018
).
4.
Q.
Xu
et al, “
High-performance surface barrier X-ray detector based on methylammonium lead tribromide single crystals
,”
ACS Appl. Mater. Interfaces
11
(
10
),
9679
9684
(
2019
).
5.
L.
Li
et al, “
Enhanced X-ray sensitivity of MAPbBr3 detector by tailoring the interface-states density
,”
ACS Appl. Mater. Interfaces
11
(
7
),
7522
7528
(
2019
).
6.
X.
Geng
et al, “
High-quality single crystal perovskite for highly sensitive X-ray detector
,”
IEEE Electron Device Lett.
41
(
2
),
256
259
(
2020
).
7.
W.
Zhang
,
H.
Wang
,
H.
Dong
,
F.
Li
,
Z.
Wang
, and
Y.
Shao
, “
Mechanical polishing with chemical passivation of perovskite single crystals for high-performance X-ray detectors
,”
J. Mater. Chem. C
10
(
45
),
17353
17363
(
2022
).
8.
M. I.
Saidaminov
et al, “
High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization
,”
Nat. Commun.
6
(
1
),
7586
(
2015
).
9.
S.
Amari
,
J.-M.
Verilhac
,
E.
Gros D’Aillon
,
A.
Ibanez
, and
J.
Zaccaro
, “
Optimization of the growth conditions for high quality CH3 NH3 PbBr3 hybrid perovskite single crystals
,”
Cryst. Growth Des.
20
(
3
),
1665
1672
(
2020
).
10.
F.
Yao
et al, “
Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals
,”
Nat. Commun.
11
(
1
),
1194
(
2020
).
11.
K.
Hecht
, “
Zum mechanismus des lichtelektrischen primärstromes in isolierenden kristallen
,”
Z. Phys.
77
(
3–4
),
235
245
(
1932
).
12.
T. E.
Schlesinger
and
R. B.
James
, “Semiconductors for room temperature nuclear detector applications,” in Semiconductors and Semimetals (Academic Press., 1995), Vol. 43.
13.
G.
Bertolini
and
A.
Coche
,
Semiconductor Detectors
(
Wiley
,
1968
).
14.
J.
Song
et al, “
Facile strategy for facet competition management to improve the performance of perovskite single-crystal X-ray detectors
,”
J. Phys. Chem. Lett.
11
(
9
),
3529
3535
(
2020
).
15.
R.
Tan
et al, “
Characterization of solution grown 3D polycrystalline methylammonium lead tribromide for x-ray detection
,”
J. Appl. Phys.
132
(
20
),
204503
(
2022
).
16.
J. M.
Guillén
et al, “
MAPb(Br1–xClx)3 hybrid perovskite materials for direct X-ray detection
,”
ACS Appl. Electron. Mater
5
(
3
), 1866–1878 (
2023
).
17.
Z.
Gou
et al, “
Self-powered X-ray detector based on all-inorganic perovskite thick film with high sensitivity under low dose rate
,”
Phys. Status Solidi RRL
13
(
8
),
1900094
(
2019
).
18.
K.
Sakhatskyi
et al, “
Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity
,”
Nat. Photonics
17, 510–517 (
2023
).
19.
A. O.
Alvarez
et al, “
Ionic field screening in MAPbBr3 crystals revealed from remnant sensitivity in X-ray detection
,”
ACS Phys. Chem. Au
3(4),
386
(
2023
).
20.
S.
Ramo
, “
Currents induced by electron motion
,”
Proc. IRE
27
(
9
),
584
585
(
1939
).
21.
C. A.
Klein
, “
Bandgap dependence and related features of radiation ionization energies in semiconductors
,”
J. Appl. Phys.
39
(
4
),
2029
2038
(
1968
).
22.
Y.
He
et al, “
High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals
,”
Nat. Commun.
9
(
1
),
1609
(
2018
).
23.
M.
Zanichelli
,
A.
Santi
,
M.
Pavesi
, and
A.
Zappettini
, “
Charge collection in semi-insulator radiation detectors in the presence of a linear decreasing electric field
,”
J. Phys. D: Appl. Phys.
46
(
36
),
365103
(
2013
).
24.
F.
Principato
,
A. A.
Turturici
,
M.
Gallo
, and
L.
Abbene
, “
Polarization phenomena in Al/p-CdTe/Pt X-ray detectors
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
730
,
141
145
(
2013
).
25.
H.
Meng
et al, “
Simulation of the charge collection in a nonuniform electric field for MAPbI3 semiconductor nuclear detector with Schottky contact
,”
IEEE Trans. Nucl. Sci.
69
(
9
),
1990
1998
(
2022
).
26.
S.
Jia
et al, “
Ion-accumulation-induced charge tunneling for high gain factor in P–I–N-structured perovskite CH3 NH3 PbI3 X-ray detector
,”
Adv. Mater. Technol.
7,
2100908
(
2022
).
27.
O.
Baussens
et al, “
An insight into the charge carriers transport properties and electric field distribution of CH3 NH3 PbBr3 thick single crystals
,”
Appl. Phys. Lett.
117
(
4
),
041904
(
2020
).
28.
Y.
Luo
et al, “
Direct observation of halide migration and its effect on the photoluminescence of methylammonium lead bromide perovskite single crystals
,”
Adv. Mater.
29
(
43
),
1703451
(
2017
).
29.
J.
Pospisil
et al, “
Reversible formation of gold halides in single-crystal hybrid-perovskite/Au interface upon biasing and effect on electronic carrier injection
,”
Adv. Funct. Mater.
29
(
32
),
1900881
(
2019
).
30.
M.
García-Batlle
et al, “
Moving ions vary electronic conductivity in lead bromide perovskite single crystals through dynamic doping
,”
Adv. Electron. Mater.
6
(
10
),
2000485
(
2020
).
31.
M.
García-Batlle
et al, “
Coupling between ion drift and kinetics of electronic current transients in MAPbBr3 single crystals
,”
ACS Energy Lett.
7
(
3
),
946
951
(
2022
).
32.
M.
García-Batlle
et al, “
Mobile ion-driven modulation of electronic conductivity explains long-timescale electrical response in lead iodide perovskite thick pellets
,”
ACS Appl. Mater. Interfaces
13
(
30
),
35617
35624
(
2021
).
33.
O.
Almora
,
D.
Miravel
,
G.
Ilario
, and
G.-B.
Germà
, “
Long-term field screening by mobile ions in thick metal halide perovskites: Understanding saturation currents
,”
Phys. Status Solidi RRL
16
,
2200336
(
2022
).
34.
S. H.
Bennett
et al, “
Charge transport comparison of FA, MA and Cs lead halide perovskite single crystals for radiation detection
,”
Front. Detect. Sci. Technol.
1
,
1249892
(
2023
).
35.
X.
Liu
,
H.
Zhang
,
B.
Zhang
,
J.
Dong
,
W.
Jie
, and
Y.
Xu
, “
Charge transport behavior in solution-grown methylammonium lead tribromide perovskite single crystal using α particles
,”
J. Phys. Chem. C
122
(
26
),
14355
14361
(
2018
).
36.
E. A.
Duijnstee
,
V. M.
Le Corre
,
M. B.
Johnston
,
L. J. A.
Koster
,
J.
Lim
, and
H. J.
Snaith
, “
Understanding dark current-voltage characteristics in metal-halide perovskite single crystals
,”
Phys. Rev. Appl.
15
(
1
),
014006
(
2021
).
37.
B.-B.
Zhang
et al, “
Defect proliferation in CsPbBr3 crystal induced by ion migration
,”
Appl. Phys. Lett.
116
(
6
),
063505
(
2020
).
38.
R.
Tan
,
B.
Dryzhakov
,
J.
Charest
,
B.
Hu
,
M.
Ahmadi
, and
E.
Lukosi
, “
Improved radiation sensing with methylammonium lead tribromide perovskite semiconductors
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
986
,
164710
(
2021
).
39.
D.
Weber
, “
CH3NH3PbX3, ein Pb(II)-system mit kubischer Perowskitstruktur/CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure
,”
Z. Naturforsch. B
33
(
12
),
1443
1445
(
1978
).
40.
NIST
, “XCOM: Photon Cross Sections Database.” [En ligne]. Disponible sur: https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
41.
G. G.
Poludniowski
and
P. M.
Evans
, “
Calculation of x-ray spectra emerging from an x-ray tube. Part I. Electron penetration characteristics in x-ray targets
,”
Med. Phys.
34
(
6
),
2164
2174
(
2007
).
42.
G. G.
Poludniowski
, “
Calculation of x-ray spectra emerging from an x-ray tube. Part II. X-ray production and filtration in x-ray targets
,”
Med. Phys.
34
(
6
),
2175
2186
(
2007
).
43.
G.
Poludniowski
,
G.
Landry
,
F.
DeBlois
,
P. M.
Evans
, and
F.
Verhaegen
, “
SpekCalc: A program to calculate photon spectra from tungsten anode x-ray tubes
,”
Phys. Med. Biol.
54
(
19
),
N433
N438
(
2009
).

Supplementary Material

You do not currently have access to this content.