Muscle contraction at the macrolevel is a physiological process that is ultimately due to the interaction between myosin and actin proteins at the microlevel. The actin–myosin interaction involves slow attachment and detachment responses and a rapid temporal change in protein conformation called power-stroke. Jump-diffusion models that combine jump processes between attachment and detachment with a mechanical description of the power-stroke have been proposed in the literature. However, the current formulations of these models are not fully compatible with the principles of thermodynamics. To solve the problem of coupling continuous mechanisms with discrete chemical transitions, we rely on the mathematical formalism of Poisson random measures. First, we design an efficient stochastic formulation for existing muscle contraction partial differential equation models. Then, we write a new jump-diffusion model for actin–myosin interaction. This new model describes both the behavior of muscle contraction on multiple time scales and its compatibility with thermodynamic principles. Finally, following a classical calibration procedure, we demonstrate the ability of the model to reproduce experimental data characterizing muscle behavior on fast and slow time scales.

1.
P.
Janssen
and
W.
Hunter
, “
Force, not sarcomere length, correlates with prolongation of isosarcometric contraction
,”
AJP: Heart Circul. Physiol.
269
,
H676
H685
(
1995
).
2.
A. F.
Huxley
and
R. M.
Simmons
, “
Proposed mechanism of force generation in striated muscle
,”
Nature
233
,
533
538
(
1971
).
3.
L. E.
Ford
,
A. F.
Huxley
, and
R. M.
Simmons
, “
Tension responses to sudden length change in stimulated frog muscle fibres near slack length
,”
J. Physiol.
269
,
441
515
(
1977
).
4.
M.
Caremani
,
F.
Pinzauti
,
M.
Reconditi
,
G.
Piazzesi
,
G. J. M.
Stienen
,
V.
Lombardi
, and
M.
Linari
, “
Size and speed of the working stroke of cardiac myosin in situ
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
3675
3680
(
2016
).
5.
M.
Irving
,
G.
Piazzesi
,
L.
Lucii
,
Y.-B.
Sun
,
J.
Harford
,
I.
Dobbie
,
M.
Ferenczi
,
M.
Reconditi
, and
V.
Lombardi
, “
Conformation of the myosin motor during force generation in skeletal muscle
,”
Nature Struct. Biol.
7
,
482
485
(
2000
).
6.
L.
Marcucci
and
L.
Truskinovsky
, “
Muscle contraction: A mechanical perspective
,”
Eur. Phys. J. E
32
,
411
418
(
2010
).
7.
M.
Caruel
and
L.
Truskinovsky
, “
Physics of muscle contraction
,”
Rep. Prog. Phys.
81
,
036602
(
2018
).
8.
M.
Tuckerman
, Statistical Mechanics: Theory and Molecular Simulation, 2nd ed., Oxford Graduate Texts (Oxford University Press, 2023).
9.
T.
Lelièvre
,
G.
Stoltz
, and
M.
Rousset
,
Free Energy Computations: A Mathematical Perspective
(
Imperial College Press
,
2010
).
10.
Z.
Schuss
, Theory and Applications of Stochastic Processes, Applied Mathematical Sciences Vol. 170 (Springer New York, 2010).
11.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
1992
), Vol. 1.
12.
A.
Månsson
, “
Actomyosin-ADP states, interhead cooperativity, and the force-velocity relation of skeletal muscle
,”
Biophys. J.
98
,
1237
1246
(
2010
).
13.
M.
Caremani
,
L.
Melli
,
M.
Dolfi
,
V.
Lombardi
, and
M.
Linari
, “
Force and number of myosin motors during muscle shortening and the coupling with the release of the ATP hydrolysis products
,”
J. Physiol.
593
,
3313
3332
(
2015
).
14.
A.
Månsson
, “
Actomyosin based contraction: One mechanokinetic model from single molecules to muscle?
,”
J. Muscle Res. Cell Motility
37
,
181
194
(
2016
).
15.
T. L.
Hill
, “
Theoretical formalism for the sliding filament model of contraction of striated muscle: Part I
,”
Progr. Biophys. Mol. Biol.
28
,
267
340
(
1974
).
16.
M.
Caruel
,
P.
Moireau
, and
D.
Chapelle
, “
Stochastic modeling of chemical-mechanical coupling in striated muscles
,”
Biomech. Model. Mechanobiol.
18
,
563
587
(
2019
).
17.
F.
Kimmig
and
M.
Caruel
, “
Hierarchical modeling of force generation in cardiac muscle
,”
Biomech. Model. Mechanobiol.
19
,
2567
2601
(
2020
).
18.
R.
Sheshka
and
L.
Truskinovsky
, “
Power-stroke-driven actomyosin contractility
,”
Phys. Rev. E
89
,
012708
(
2014
).
19.
L.-P.
Chaintron
,
M.
Caruel
, and
F.
Kimmig
, “
Modeling acto-myosin interaction: Beyond the Huxley–Hill framework
,”
Math. Action
12
,
191
226
(
2023
).
20.
A. F.
Huxley
, “
Muscle structure and theories of contraction
,”
Progr. Biophys. Biophys. Chem.
7
,
255
318
(
1957
).
21.
E.
Eisenberg
and
T. L.
Hill
, “
A cross-bridge model of muscle contraction
,”
Progr. Biophys. Mol. Biol.
33
,
55
82
(
1978
).
22.
T. L.
Hill
, “
Theoretical formalism for the sliding filament model of contraction of striated muscle: Part II
,”
Prog. Biophys. Mol. Biol.
29
,
105
159
(
1976
).
23.
L. E.
Ford
,
A. F.
Huxley
, and
R. M.
Simmons
, “
The relation between stiffness and filament overlap in stimulated frog muscle fibres
,”
J. Physiol.
311
,
219
249
(
1981
).
24.
I.
Pertici
,
M.
Caremani
, and
M.
Reconditi
, “
A mechanical model of the half-sarcomere which includes the contribution of titin
,”
J. Muscle Res. Cell Motility
40
,
29
41
(
2019
).
25.
N.
Ikeda
and
S.
Watanabe
,
Stochastic Differential Equations and Diffusion Processes
(
Elsevier
,
2014
).
26.
P.
Del Moral
and
S.
Penev
,
Stochastic Processes: From Applications to Theory
(
Chapman and Hall
,
2017
).
27.
T. L.
Hill
,
Free Energy Transduction in Biology
(
Academic Press
,
1977
).
28.
E.
Eisenberg
,
T. L.
Hill
, and
Y.
Chen
, “
Cross-bridge model of muscle contraction. Quantitative analysis
,”
Biophys. J.
29
,
195
227
(
1980
).
29.
F.
Kimmig
,
D.
Chapelle
, and
P.
Moireau
, “
Thermodynamic properties of muscle contraction models and associated discrete-time principles
,”
Adv. Model. Simul. Eng. Sci.
6
,
6
(
2019
).
30.
A. V.
Hill
, “
The heat of shortening and the dynamic constants of muscle
,”
Proc. R. Soc. Lond. B
126
,
136
195
(
1938
).
31.
A. F.
Huxley
and
S.
Tideswell
, “
Filament compliance and tension transients in muscle
,”
J. Muscle Res. Cell Motility
17
,
507
511
(
1996
).
32.
G.
Piazzesi
and
V.
Lombardi
, “
A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle
,”
Biophys. J.
68
,
1966
1979
(
1995
).
33.
D. A.
Smith
,
M. A.
Geeves
,
J.
Sleep
, and
S. M.
Mijailovich
, “
Towards a unified theory of muscle contraction. I: Foundations
,”
Ann. Biomed. Eng.
36
,
1624
1640
(
2008
).
34.
F.
Jülicher
,
A.
Ajdari
, and
J.
Prost
, “
Modeling molecular motors
,”
Rev. Mod. Phys.
69
,
1269
1282
(
1997
).
35.
A. M.
Gordon
,
E.
Homsher
, and
M.
Regnier
, “
Regulation of contraction in striated muscle
,”
Physiol. Rev.
80
,
853
924
(
2000
).
36.
F.
Pinzauti
,
I.
Pertici
,
M.
Reconditi
,
T.
Narayanan
,
G. J. M.
Stienen
,
G.
Piazzesi
,
V.
Lombardi
,
M.
Linari
, and
M.
Caremani
, “
The force and stiffness of myosin motors in the isometric twitch of a cardiac trabecula and the effect of the extracellular calcium concentration
,”
J. Physiol.
596
,
2581
2596
(
2018
).
37.
R.
van Heuningen
,
W.
Rijnsburger
, and
H.
ter Keurs
, “
Sarcomere length control in striated muscle
,”
Am. J. Physiol.
242
,
H411
H420
(
1982
).
38.
P.
de Tombe
and
H.
ter Keurs
, “
An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium
,”
J. Physiol.
454
,
619
642
(
1992
).
39.
P.
de Tombe
and
H.
ter Keurs
, “
Force and velocity of sarcomere shortening in trabeculae from rat heart effects of temperature
,”
Circ. Res.
66
,
1239
1254
(
1990
).
40.
M.
Daniels
,
M.
Noble
,
H.
ter Keurs
, and
B.
Wohlfart
, “
Velocity of sarcomere shortening in rat cardiac muscle: Relationship to force, sarcomere length, calcium and time
,”
J. Physiol.
355
,
367
381
(
1984
).
41.
N. P.
Smith
,
C. J.
Barclay
, and
D. S.
Loiselle
, “
The efficiency of muscle contraction
,”
Prog. Biophys. Mol. Biol.
88
,
1
58
(
2005
).
42.
J.-C.
Han
,
A. J.
Taberner
,
P. M. F.
Nielsen
, and
D. S.
Loiselle
, “
Interventricular comparison of the energetics of contraction of trabeculae carneae isolated from the rat heart
,”
J. Physiol.
591
,
701
717
(
2013
).
43.
P.
de Tombe
and
G.
Stienen
, “
Impact of temperature on cross-bridge cycling kinetics in rat myocardium
,”
J. Physiol.
584
,
591
600
(
2007
).
44.
C. J.
Barclay
, “
Energetics of contraction
,”
Comprehens. Physiol.
5
,
961
995
(
2015
).
45.
M.
Reconditi
,
M.
Linari
,
L.
Lucii
,
A.
Stewart
,
Y.-B.
Sun
,
P.
Boesecke
,
T.
Narayanan
,
R. F.
Fischetti
,
T.
Irving
,
G.
Piazzesi
,
M.
Irving
, and
V.
Lombardi
, “
The myosin motor in muscle generates a smaller and slower working stroke at higher load
,”
Nature
428
,
578
581
(
2004
).
46.
I.
Pertici
,
L.
Bongini
,
L.
Melli
,
G.
Bianchi
,
L.
Salvi
, and
G.
Falorsi
, “
A myosin ii nanomachine mimicking the striated muscle
,”
Nat. Commun.
9
,
3532
(
2018
).
47.
F.
Kimmig
,
M.
Caruel
, and
D.
Chapelle
, “
Varying thin filament activation in the framework of the huxley’57 model
,”
Int. J. Numer. Methods Biomed. Eng.
38
,
e3655
(
2022
).
48.
M.
Linari
,
I.
Dobbie
,
M.
Reconditi
,
N.
Koubassova
,
M.
Irving
,
G.
Piazzesi
, and
V.
Lombardi
, “
the stiffness of skeletal muscle in isometric contraction and rigor: The fraction of myosin heads bound to actin
,”
Biophys. J.
74
,
2459
2473
(
1998
).
49.
J. D.
Powers
,
P.
Bianco
,
I.
Pertici
,
M.
Reconditi
,
V.
Lombardi
, and
G.
Piazzesi
, “
Contracting striated muscle has a dynamic I-band spring with an undamped stiffness 100 times larger than the passive stiffness
,”
J. Physiol.
598
,
331
345
(
2020
).
50.
M.
Caruel
,
J.-M.
Allain
, and
L.
Truskinovsky
, “
Muscle as a metamaterial operating near a critical point
,”
Phys. Rev. Lett.
110
,
248103
(
2013
).
51.
M.
Caruel
and
L.
Truskinovsky
, “
Bi-stability resistant to fluctuations
,”
J. Mech. Phys. Solids
109
,
117
141
(
2017
).
52.
T.
Guérin
,
J.
Prost
, and
J.-F.
Joanny
, “
Dynamic instabilities in assemblies of molecular motors with finite stiffness
,”
Phys. Rev. Lett.
104
,
248102
(
2010
).
53.
T.
Guérin
,
J.
Prost
, and
J. F.
Joanny
, “
Dynamical behavior of molecular motor assemblies in the rigid and crossbridge models
,”
Eur. Phys. J. E
34
,
60
(
2011
).
54.
A.
Vilfan
and
T.
Duke
, “
Instabilities in the transient response of muscle
,”
Biophys. J.
85
,
818
827
(
2003
).
55.
T.
Erdmann
and
U. S.
Schwarz
, “
Stochastic force generation by small ensembles of myosin II motors
,”
Phys. Rev. Lett.
108
,
188101
(
2012
).
56.
J. A.
Wagoner
and
K. A.
Dill
, “
Evolution of mechanical cooperativity among myosin II motors
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2101871118
(
2021
).
57.
M. P.
Leighton
and
D. A.
Sivak
, “
Dynamic and thermodynamic bounds for collective motor-driven transport
,”
Phys. Rev. Lett.
129
,
118102
(
2022
).
58.
S. S.
Wijeratne
,
S. A.
Fiorenza
,
A. E.
Neary
,
R.
Subramanian
, and
M. D.
Betterton
, “
Motor guidance by long-range communication on the microtubule highway
,”
Proc. Natl. Acad. Sci. U.S.A.
119
,
e2120193119
(
2022
).
59.
V. F.
Geyer
and
S.
Diez
, “
Horizontal magnetic tweezers to directly measure the force–velocity relationship for multiple kinesin motors
,”
Small
19
,
2300558
(
2023
).
60.
C. K.
Syed
and
R. H.
Lee
, “
Slow and fast grouping of cargo velocities in axonal transport due to single versus multi-motor transport
,”
J. Theor. Biol.
480
,
65
70
(
2019
).
You do not currently have access to this content.