Electronics today has evolved significantly, including its application in transparent and flexible devices. Flexible electronics offers new product concepts, including low production cost, low energy consumption, and sustainable and environmentally friendly materials. This concept leads to the development of novel materials that realize today’s requirements. Incorporating optically transparent and flexible thin-film-based devices into the electronic circuitry helps in maintaining high conductivity along with achieving the similar electronic behavior of the conventional electronic gadgets. Thin-film diodes (TFDs) and thin-film transistors (TFTs) are the core materials to be incorporated as building blocks for flexible devices. Among them, oxide-based thin films have been marked to be significant because of their efficient electrical performance, low temperature processing, and device flexibility. The present article reviews the concepts and application of zinc oxide (ZnO) as the semiconducting material for flexible thin-film devices. We also review flexible and transparent TFDs and TFTs that are based prominently on ZnO as the semiconducting material. Furthermore, the present issues have also been addressed.

1.
S.
Lee
,
D.
Jeong
,
M.
Mativenga
, and
J.
Jang
, “
Highly robust bendable oxide thin-film transistors on polyimide substrates via mesh and strip patterning of device layers
,”
Adv. Funct. Mater.
27
, 1700437 (
2017
).
2.
R. N.
Bukke
,
N. N.
Mude
,
J. K.
Saha
,
S.
Lee
, and
J.
Jang
, “
P-22: Flexible La doped ZnO TFTs and circuits on polyimide substrate for foldable display
,”
SID Symp. Dig. Tech. Pap.
52
,
1135
1138
(
2021
).
3.
J.
Park
,
S.
Heo
,
K.
Park
,
M. H.
Song
,
J.-Y.
Kim
,
G.
Kyung
,
R. S.
Ruoff
,
J.-U.
Park
, and
F.
Bien
, “
Research on flexible display at Ulsan National Institute of Science and Technology
,”
npj Flexible Electron.
1
,
9
(
2017
).
4.
Y.
Huang
,
Y.
Su
, and
S.
Jiang
, “
Applications of flexible electronics
,” in
Flexible Electronics
(
Springer Nature
,
Singapore
,
2022
), pp.
381
412
.
5.
K.
Xu
,
Y.
Lu
, and
K.
Takei
, “
Multifunctional skin-inspired flexible sensor systems for wearable electronics
,”
Adv. Mater. Technol.
4
, 1800628 (
2019
).
6.
R. A.
Salinas
,
A.
Orduña-Díaz
,
O.
Obregon-Hinostroza
, and
M. A.
Dominguez
, “
Biosensors based on zinc oxide thin-film transistors using recyclable plastic substrates as an alternative for real-time pathogen detection
,”
Talanta
237
,
122970
(
2022
).
7.
J.
Lee
,
M. J.
Kim
,
H.
Yang
,
S.
Kim
,
S.
Yeom
,
G.
Ryu
,
Y.
Shin
,
O.
Sul
,
J. K.
Jeong
, and
S. B.
Lee
, “
Extended-gate amorphous InGaZnO thin film transistor for biochemical sensing
,”
IEEE Sens. J.
21
,
178
184
(
2021
).
8.
D.
Dimitrov
,
C.-L.
Tsai
,
S.
Petrov
,
V.
Marinova
,
D.
Petrova
,
B.
Napoleonov
,
B.
Blagoev
,
V.
Strijkova
,
K. Y.
Hsu
, and
S. H.
Lin
, “
Atomic layer-deposited Al-doped ZnO thin films for display applications
,”
Coatings
10
,
539
(
2020
).
9.
A.
Stadler
, “
Transparent conducting oxides—An up-to-date overview
,”
Materials
5
,
661
683
(
2012
).
10.
S.
Guo
,
W.
Diyatmika
,
Y.
Unutulmazsoy
,
L.
Yang
,
B.
Dai
,
L.
Xu
,
J.
Han
,
V.
Ralchenko
,
A.
Anders
, and
J.
Zhu
, “
High-quality transparent conductive indium oxide film deposition by reactive pulsed magnetron sputtering: Determining the limits of substrate heating
,”
Appl. Surf. Sci.
585
,
152604
(
2022
).
11.
Y.
Chen
,
W.
Huang
,
V. K.
Sangwan
,
B.
Wang
,
L.
Zeng
,
G.
Wang
,
Y.
Huang
,
Z.
Lu
,
M. J.
Bedzyk
,
M. C.
Hersam
,
T. J.
Marks
, and
A.
Facchetti
, “
Polymer doping enables a two-dimensional electron gas for high-performance homojunction oxide thin-film transistors
,”
Adv. Mater.
31
, 1805082 (
2019
).
12.
A.
Jilani
,
M. S.
Abdel-wahab
, and
A. H.
Hammad
, “
Advance deposition techniques for thin film and coating
,” in
Modern Technologies for Creating the Thin-Film Systems and Coatings
(
InTech
,
2017
).
13.
S.
Vyas
, “
A short review on properties and applications of zinc oxide based thin films and devices : ZnO as a promising material for applications in electronics, optoelectronics, biomedical and sensors
,”
Johnson Matthey Technol. Rev.
64
,
202
218
(
2020
).
14.
Y.
Liu
,
Y.
Li
, and
H.
Zeng
, “
ZnO-based transparent conductive thin films: Doping, performance, and processing
,”
J. Nanomater.
2013
,
1
9
.
15.
Ü
Özgür
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Doğan
,
V.
Avrutin
,
S.-J.
Cho
, and
H.
Morkoç
, “
A comprehensive review of ZnO materials and devices
,”
J. Appl. Phys.
98
,
041301
(
2005
).
16.
K.
Kandpal
and
N.
Gupta
, “
Perspective of zinc oxide based thin film transistors: A comprehensive review
,”
Microelectron. Int.
35
,
52
63
(
2018
).
17.
M.
Kovalenko
,
O.
Bovgyra
,
A.
Franiv
, and
V.
Dzikovskyi
, “
Electronic structure of ZnO thin films doped with group III elements
,”
Mater. Today Proc.
35
,
604
608
(
2021
).
18.
A.
Badawi
,
M. G.
Althobaiti
,
E. E.
Ali
,
S. S.
Alharthi
, and
A. N.
Alharbi
, “
A comparative study of the structural and optical properties of transition metals (M = Fe, Co, Mn, Ni) doped ZnO films deposited by spray-pyrolysis technique for optoelectronic applications
,”
Opt. Mater.
124
,
112055
(
2022
).
19.
P.
Murkute
,
H.
Ghadi
,
S.
Sreedhara
, and
S.
Chakrabarti
, “
Detailed investigation of photoluminescence, structural, and elemental properties of ZnO thin films under various annealing ambient
,”
Superlattices Microstruct.
136
,
106310
(
2019
).
20.
R.
Raji
and
K. G.
Gopchandran
, “
ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing
,”
J. Sci.: Adv. Mater. Devices
2
,
51
58
(
2017
).
21.
A.
Janotti
and
C. G.
Van de Walle
, “
Fundamentals of zinc oxide as a semiconductor
,”
Rep. Prog. Phys.
72
,
126501
(
2009
).
22.
M.
Moreira
,
J.
Afonso
,
J.
Crepelliere
,
D.
Lenoble
, and
P.
Lunca-Popa
, “
A review on the p-type transparent Cu–Cr–O delafossite materials
,”
J. Mater. Sci.
57
,
3114
3142
(
2022
).
23.
C.-T.
Chi
,
I.-F.
Lu
,
I.-C.
Chiu
,
P.-Y.
Chen
,
B.-W.
Huang
,
I.-C.
Cheng
, and
J.-Z.
Chen
, “
Flexible transparent ZnO:Al/ZnO/CuAlOx:Ca heterojunction diodes on polyethylene terephthalate substrates
,”
J. Electron. Mater.
42
,
1242
1245
(
2013
).
24.
P.
Salunkhe
,
P.
Bhat
, and
D.
Kekuda
, “
A flexible bilayer p-NiO/n-ZnO films with photodetecting properties in self power mode
,”
Phys. Scr.
98
,
015829
(
2023
).
25.
J.
Huang
,
B.
Li
,
Y.
Hu
,
X.
Zhou
,
Z.
Zhang
,
Y.
Ma
,
K.
Tang
,
L.
Wang
, and
Y.
Lu
, “
Transparent p-NiO/n-ZnO heterojunction ultraviolet photodetectors prepared on flexible substrates
,”
Surf. Coat. Technol.
362
,
57
61
(
2019
).
26.
L. P.
Dai
,
H.
Deng
,
F. Y.
Mao
, and
J. D.
Zang
, “
The recent advances of research on p-type ZnO thin film
,”
J. Mater. Sci.: Mater. Electron.
19
,
727
734
(
2008
).
27.
Y. H.
Kwon
,
D.-H.
Kim
,
H.-K.
Kim
, and
J.
Nah
, “
Phosphorus-doped zinc oxide p–n homojunction thin film for flexible piezoelectric nanogenerators
,”
Nano Energy
18
,
126
132
(
2015
).
28.
K.-M.
Kang
,
C.
Lee
,
M.
Kim
,
H.
Choi
,
D.
Kim
,
S.-R.
Kim
,
J.-W.
Park
, and
H.-H.
Park
, “
Homogeneous ZnO p-n junction formed by continuous atomic layer deposition process
,”
J. Alloys Compd.
925
,
166694
(
2022
).
29.
S.
Kyu Kang
,
D.
Yun Kang
,
J.
Wan Park
,
K.
Rock Son
, and
T.
Geun Kim
, “
Work function-tunable ZnO/Ag/ZnO film as an effective hole injection electrode prepared via nickel doping for thermally activated delayed fluorescence-based flexible blue organic light-emitting diodes
,”
Appl. Surf. Sci.
538
,
148202
(
2021
).
30.
U.
Chaitra
,
A. V.
Muhammed Ali
,
M. G.
Mahesha
,
A.
Kompa
,
D.
Kekuda
, and
K.
Mohan Rao
, “
Property evaluation of spin coated Al doped ZnO thin films and Au/AZO/FTO Schottky diodes
,”
Superlattices Microstruct.
155
,
106903
(
2021
).
31.
Y.
Magari
,
S. G. M.
Aman
,
D.
Koretomo
,
K.
Masuda
,
K.
Shimpo
,
H.
Makino
,
M.
Kimura
, and
M.
Furuta
, “
Record-high-performance hydrogenated In–Ga–Zn–O flexible Schottky diodes
,”
ACS Appl. Mater. Interfaces
12
,
47739
47746
(
2020
).
32.
J. C.
Tinoco
,
S. A.
Hernández
,
O.
Rodríguez-Bernal
,
A. G.
Vega-Poot
,
G.
Rodríguez-Gattorno
,
M. d. l. L.
Olvera
, and
A. G.
Martinez-Lopez
, “
Fabrication of Schottky barrier diodes based on ZnO for flexible electronics
,”
J. Mater. Sci.: Mater. Electron.
31
,
7373
7377
(
2020
).
33.
J.
Semple
,
S.
Rossbauer
,
C. H.
Burgess
,
K.
Zhao
,
L. K.
Jagadamma
,
A.
Amassian
,
M. A.
McLachlan
, and
T. D.
Anthopoulos
, “
Radio frequency coplanar ZnO Schottky nanodiodes processed from solution on plastic substrates
,”
Small
12
,
1993
2000
(
2016
).
34.
H. C.
Card
, “
Photovoltaic properties of MIS-Schottky barriers
,”
Solid State Electron.
20
,
971
976
(
1977
).
35.
C.-H.
Lin
and
C. W.
Liu
, “
Metal-insulator-semiconductor photodetectors
,”
Sensors
10
,
8797
8826
(
2010
).
36.
M. A.
Dominguez
,
J. A.
Luna-Lopez
, and
S.
Ceron
, “
Low-temperature ultrasonic spray deposited aluminum doped zinc oxide film and its application in flexible metal-insulator-semiconductor diodes
,”
Thin Solid Films
645
,
278
281
(
2018
).
37.
K.
Savarimuthu
,
G.
Rajamanickam
,
R.
Shankararajan
,
R.
Perumal
, and
A.
Rayarfrancis
, “
Experimental study on flexible ZnO based nanogenerator using Schottky contact for energy harvesting applications
,”
IEEE Trans. Nanotechnol.
16
,
469
476
(
2017
).
38.
I.
Azad
,
M. K.
Ram
,
D. Y.
Goswami
, and
E.
Stefanakos
, “
Fabrication and characterization of ZnO Langmuir–Blodgett film and its use in metal–insulator–metal tunnel diode
,”
Langmuir
32
,
8307
8314
(
2016
).
39.
J.
Aziz
,
H.
Kim
,
S.
Rehman
,
M. F.
Khan
,
K. D.
Kadam
,
H.
Patil
,
S.
Aftab
,
G.
Dastgeer
, and
D.
Kim
, “
Flexible diodes with low breakdown voltage for steep slope transistors and one diode-one resistor applications
,”
Adv. Electron. Mater.
8
,
2100961
(
2022
).
40.
J.-W.
Park
,
D.
Lee
,
K.
Kim
,
Y. H.
Cho
, and
Y. S.
Kim
, “
Rectification mechanism of a P-type oxide-based metal–insulator–oxide semiconductor–metal thin-film diode
,”
ACS Appl. Electron. Mater.
2
,
3946
3952
(
2020
).
41.
K.
Oura
,
T.
Kumatani
,
H.
Wada
,
M.
Koyama
,
T.
Maemoto
, and
S.
Sasa
, “
Repeated bending durability evaluation of ZnO and Al-doped ZnO thin films grown on cyclo-olefin polymer for flexible oxide device applications
,”
Jpn. J. Appl. Phys.
61
,
101001
(
2022
).
42.
X.
Zhang
,
J.
Zhai
,
X.
Yu
,
L.
Ding
, and
W.
Zhang
, “
Fabrication and characterization of flexible Ag/ZnO Schottky diodes on polyimide substrates
,”
Thin Solid Films
548
,
623
626
(
2013
).
43.
G.
Torrisi
,
I.
Crupi
,
S.
Mirabella
, and
A.
Terrasi
, “
Robustness and electrical reliability of AZO/Ag/AZO thin film after bending stress
,”
Sol. Energy Mater. Sol. Cells
165
,
88
93
(
2017
).
44.
L.
Zhang
,
H.
Yu
,
W.
Xiao
,
C.
Liu
,
J.
Chen
,
M.
Guo
,
H.
Gao
,
B.
Liu
, and
W.
Wu
, “
Strategies for applications of oxide-based thin film transistors
,”
Electronics
11
,
960
(
2022
).
45.
J.
Song
,
X.
Huang
,
C.
Han
,
Y.
Yu
,
Y.
Su
, and
P.
Lai
, “
Recent developments of flexible InGaZnO thin-film transistors
,”
Phys. Status Solidi A
218
,
2000527
(
2021
).
46.
H.
Oh
,
K.
Cho
,
S.
Park
, and
S.
Kim
, “
Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate structure
,”
Microelectron. Eng.
159
,
179
183
(
2016
).
47.
N.
Munzenrieder
,
P.
Voser
,
L.
Petti
,
C.
Zysset
,
L.
Buthe
,
C.
Vogt
,
G. A.
Salvatore
, and
G.
Troster
, “
Flexible self-aligned double-gate IGZO TFT
,”
IEEE Electron Device Lett.
35
,
69
71
(
2014
).
48.
N.
Münzenrieder
,
C.
Zysset
,
L.
Petti
,
T.
Kinkeldei
,
G. A.
Salvatore
, and
G.
Tröster
, “
Flexible double gate a-IGZO TFT fabricated on free standing polyimide foil
,”
Solid State Electron.
84
,
198
204
(
2013
).
49.
Flexible Electronics
, edited by
W. S.
Wong
and
A.
Salleo
(
Springer
,
Boston, MA
,
2009
).
50.
B. R.
Tak
,
M.-M.
Yang
,
Y.-H.
Lai
,
Y.-H.
Chu
,
M.
Alexe
, and
R.
Singh
, “
Photovoltaic and flexible deep ultraviolet wavelength detector based on novel β-Ga2O3/muscovite heteroepitaxy
,”
Sci. Rep.
10
,
16098
(
2020
).
51.
M.
Nasiri
and
S. M.
Rozati
, “
Muscovite mica as a flexible substrate for transparent conductive AZO thin films deposited by spray pyrolysis
,”
Mater. Sci. Semicond. Process.
81
,
38
43
(
2018
).
52.
Y.
Bitla
and
Y.-H.
Chu
, “
MICAtronics: A new platform for flexible X-tronics
,”
FlatChem
3
,
26
42
(
2017
).
53.
J.
Dong
,
Q.
Li
,
Z.
Yi
,
D.
Han
,
Y.
Wang
, and
X.
Zhang
, “
High-performance ZnO thin-film transistors on flexible PET substrates with a maximum process temperature of 100 °C
,”
IEEE J. Electron Devices Soc.
9
,
10
13
(
2021
).
54.
H. Y.
Lee
,
W. Y.
Ye
,
Y. H.
Lin
, and
C. T.
Lee
, “
Performance investigation of amorphous InGaZnO flexible thin-film transistors deposited on PET substrates
,”
IEEE/OSA J. Disp. Technol.
10
,
792
796
(
2014
).
55.
M.
Divya
,
J. R.
Pradhan
,
S. S.
Priyadarsini
, and
S.
Dasgupta
, “
High operation frequency and strain tolerance of fully printed oxide thin film transistors and circuits on PET substrates
,”
Small
18
,
2202891
(
2022
).
56.
H.
Ning
,
X.
Zeng
,
H.
Zhang
,
X.
Zhang
,
R.
Yao
,
X.
Liu
,
D.
Luo
,
Z.
Xu
,
Q.
Ye
, and
J.
Peng
, “
Transparent flexible IGZO thin film transistors fabricated at room temperature
,”
Membranes
12
,
29
(
2022
).
57.
M.-J.
Park
,
D.-J.
Yun
,
M.-K.
Ryu
,
J.-H.
Yang
,
J.-E.
Pi
,
G.-H.
Kim
,
C.-S.
Hwang
, and
S.-M.
Yoon
, “Bending Performance and Bias-Stress Stability of the In-Ga-Zn-O TFTs Prepared on Flexible PEN Substrates with Optimum Barrier Structures”
2015 22nd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)
(IEEE, 2015).
58.
H. C.
Lai
,
Z.
Pei
,
J. R.
Jian
, and
B. J.
Tzeng
, “
Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability
,”
Appl. Phys. Lett.
105
, 033510 (
2014
).
59.
K.
Song
,
J.
Noh
,
T.
Jun
,
Y.
Jung
,
H. Y.
Kang
, and
J.
Moon
, “
Fully flexible solution-deposited ZnO thin-film transistors
,”
Adv. Mater.
22
,
4308
4312
(
2010
).
60.
J. K.
Saha
,
R. N.
Bukke
,
M. M.
Hasan
,
Y. G.
Kim
,
M. M.
Islam
,
N. N.
Mude
,
M. M.
Billah
,
S.
Lee
, and
J.
Jang
, “
P-122: Mechanical bending test of high mobility ZnO TFTs on PI substrate by spray pyrolysis
,”
SID Symp. Dig. Tech. Pap.
51
,
1829
1832
(
2020
).
61.
H. J.
Jeong
,
K. L.
Han
,
K. C.
Ok
,
H. M.
Lee
,
S.
Oh
, and
J. S.
Park
, “
Effect of mechanical stress on the stability of flexible InGaZnO thin-film transistors
,”
J. Inf. Disp.
18
,
87
91
(
2017
).
62.
G.
Cantarella
,
C.
Vogt
,
R.
Hopf
,
N.
Münzenrieder
,
P.
Andrianakis
,
L.
Petti
,
A.
Daus
,
S.
Knobelspies
,
L.
Büthe
,
G.
Tröster
, and
G. A.
Salvatore
, “
Buckled thin-film transistors and circuits on soft elastomers for stretchable electronics
,”
ACS Appl. Mater. Interfaces
9
,
28750
28757
(
2017
).
63.
K. T.
Eun
,
W. J.
Hwang
,
B. K.
Sharma
,
J. H.
Ahn
,
Y. K.
Lee
, and
S. H.
Choa
, “
Mechanical flexibility of zinc oxide thin-film transistors prepared by transfer printing method
,”
Mod. Phys. Lett. B
26
,
1250077
(
2012
).
64.
M.
Wang
,
X.
Li
,
X.
Xiong
,
J.
Song
,
C.
Gu
,
D.
Zhan
,
Q.
Hu
,
S.
Li
, and
Y.
Wu
, “
High-performance flexible ZnO thin-film transistors by atomic layer deposition
,”
IEEE Electron Device Lett.
40
,
419
422
(
2019
).
65.
H. F.
Iqbal
,
Q.
Ai
,
K. J.
Thorley
,
H.
Chen
,
I.
McCulloch
,
C.
Risko
,
J. E.
Anthony
, and
O. D.
Jurchescu
, “
Suppressing bias stress degradation in high performance solution processed organic transistors operating in air
,”
Nat. Commun.
12
,
2352
(
2021
).
66.
L.
Mariucci
,
G.
Giusi
,
M.
Rapisarda
,
A.
La Magna
,
S.
Calvi
,
A.
Valletta
, and
G.
Fortunato
, “
Electrical instability in short channel organic thin-film transistors induced by lucky-polaron mechanism
,”
Org. Electron.
98
,
106279
(
2021
).
67.
T.-C.
Chang
,
Y.-C.
Tsao
,
P.-H.
Chen
,
M.-C.
Tai
,
S.-P.
Huang
,
W.-C.
Su
, and
G.-F.
Chen
, “
Flexible low-temperature polycrystalline silicon thin-film transistors
,”
Mater. Today Adv.
5
,
100040
(
2020
).
68.
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
, “
Oxide semiconductor thin-film transistors: A review of recent advances
,”
Adv. Mater.
24
,
2945
2986
(
2012
).
69.
Y.
He
,
X.
Wang
,
Y.
Gao
,
Y.
Hou
, and
Q.
Wan
, “
Oxide-based thin film transistors for flexible electronics
,”
J. Semicond.
39
,
011005
(
2018
).
70.
Z.
Ye
,
H.
He
, and
L.
Jiang
, “
Co-doping: an effective strategy for achieving stable p-type ZnO thin films
,”
Nano Energy
52
,
527
540
(
2018
).
71.
B.
Wang
,
W.
Huang
,
A.
Facchetti
, and
T. J.
Marks
, “
Low-temperature thin-film combustion synthesis of metal-oxide semiconductors: Science and technology
,” in
Amorphous Oxide Semiconductors
(
Wiley
,
2022
), pp.
159
184
.
72.
A.
Sil
,
L.
Avazpour
,
E. A.
Goldfine
,
Q.
Ma
,
W.
Huang
,
B.
Wang
,
M. J.
Bedzyk
,
J. E.
Medvedeva
,
A.
Facchetti
, and
T. J.
Marks
, “
Structure–charge transport relationships in fluoride-doped amorphous semiconducting indium oxide: Combined experimental and theoretical analysis
,”
Chem. Mater.
32
,
805
820
(
2020
).
73.
A.
Sil
,
M. J.
Deck
,
E. A.
Goldfine
,
C.
Zhang
,
S. V.
Patel
,
S.
Flynn
,
H.
Liu
,
P.-H.
Chien
,
K. R.
Poeppelmeier
,
V. P.
Dravid
,
M. J.
Bedzyk
,
J. E.
Medvedeva
,
Y.-Y.
Hu
,
A.
Facchetti
, and
T. J.
Marks
, “
Fluoride doping in crystalline and amorphous indium oxide semiconductors
,”
Chem. Mater.
34
,
3253
3266
(
2022
).
74.
L.
Petti
,
N.
Münzenrieder
,
C.
Vogt
,
H.
Faber
,
L.
Büthe
,
G.
Cantarella
,
F.
Bottacchi
,
T. D.
Anthopoulos
, and
G.
Tröster
, “
Metal oxide semiconductor thin-film transistors for flexible electronics
,”
Appl. Phys. Rev.
3
,
021303
(
2016
).
75.
M. J.
Mirshojaeian Hosseini
and
R. A.
Nawrocki
, “
A review of the progress of thin-film transistors and their technologies for flexible electronics
,”
Micromachines
12
,
655
(
2021
).
76.
Y. H.
Zhang
,
Z. X.
Mei
,
H. L.
Liang
, and
X. L.
Du
, “
Review of flexible and transparent thin-film transistors based on zinc oxide and related materials
,”
Chin. Phys. B
26
,
047307
(
2017
).
77.
Y.
Seo
,
H.-S.
Jeong
,
H.-Y.
Jeong
,
S.
Park
,
J. T.
Jang
,
S.
Choi
,
D. M.
Kim
,
S.-J.
Choi
,
X.
Jin
,
H.-I.
Kwon
, and
D. H.
Kim
, “
Effect of simultaneous mechanical and electrical stress on the electrical performance of flexible In-Ga-Zn-O thin-film transistors
,”
Materials
12
,
3248
(
2019
).
78.
S.
Vyas
,
A. D. D.
Dwivedi
, and
R. D.
Dwivedi
, “
Effect of gate dielectric on the performance of ZnO based thin film transistor
,”
Superlattices Microstruct.
120
,
223
234
(
2018
).
79.
W. C.
Sheets
,
S. J.
Kang
,
H.-H.
Hsieh
,
S.-I.
Lin
,
C.-W.
Chou
,
W.-Y.
Hung
,
Z.
Chen
,
S.
Lu
,
X.
Yu
,
D. S.
Bull
,
C.-C.
Hsaio
, and
A.
Facchetti
, “Organic gate insulator materials for amorphous metal oxide TFTs,” in
2015 IEEE 65th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2015
), pp.
1878
1882
.
80.
H.
Ning
,
Z.
Liang
,
X.
Fu
,
R.
Yao
,
Z.
Xu
,
T.
Qiu
,
Z.
Yang
,
C.
Hu
,
W.
Xu
, and
J.
Peng
, “
Environmentally friendly, flexible and high performance PVA dielectric layer fabricated by solution method and its application in IGZO-TFT
,”
Org. Electron.
100
,
106383
(
2022
).
81.
C. Y.
Lee
,
M. Y.
Lin
,
W. H.
Wu
,
J. Y.
Wang
,
Y.
Chou
,
W. F.
Su
,
Y. F.
Chen
, and
C. F.
Lin
, “
Flexible ZnO transparent thin-film transistors by a solution-based process at various solution concentrations
,”
Semicond. Sci. Technol.
25
,
105008
(
2010
).
82.
V.
Pecunia
,
K.
Banger
, and
H.
Sirringhaus
, “
High-performance solution-processed amorphous-oxide-semiconductor TFTs with organic polymeric gate dielectrics
,”
Adv. Electron. Mater.
1
,
1400024
(
2015
).
83.
H.
Zhang
,
F.
Zhang
,
J.
Sun
,
M.
Zhang
,
Y.
Hu
,
Z.
Lou
,
Y.
Hou
, and
F.
Teng
, “
Solution-processed organic field-effect transistors with cross-linked poly(4-vinylphenol)/polyvinyl alcohol bilayer dielectrics
,”
Appl. Surf. Sci.
478
,
699
707
(
2019
).
84.
B.
Wang
,
W.
Huang
,
L.
Chi
,
M.
Al-Hashimi
,
T. J.
Marks
, and
A.
Facchetti
, “
High-k gate dielectrics for emerging flexible and stretchable electronics
,”
Chem. Rev.
118
,
5690
5754
(
2018
).
85.
M. N.
Le
,
K.
Baeg
,
K.
Kim
,
S.
Kang
,
B. D.
Choi
,
C.
Park
,
S.
Jeon
,
S.
Lee
,
J.
Jo
,
S.
Kim
,
J.
Park
,
D.
Ho
,
J.
Hong
,
M.
Kim
,
H.
Kim
,
C.
Kim
,
K.
Kim
,
Y.
Kim
,
S. K.
Park
, and
M.
Kim
, “
Versatile solution-processed organic–inorganic hybrid superlattices for ultraflexible and transparent high-performance optoelectronic devices
,”
Adv. Funct. Mater.
31
,
2103285
(
2021
).
86.
G. S. R.
Mullapudi
,
G. A.
Velazquez-Nevarez
,
C.
Avila-Avendano
,
J. A.
Torres-Ochoa
,
M. A.
Quevedo-López
, and
R.
Ramírez-Bon
, “
Low-temperature deposition of inorganic–organic HfO2–PMMA hybrid gate dielectric layers for high-mobility ZnO thin-film transistors
,”
ACS Appl. Electron. Mater.
1
,
1003
1011
(
2019
).
87.
B.
Wang
,
X.
Yu
,
P.
Guo
,
W.
Huang
,
L.
Zeng
,
N.
Zhou
,
L.
Chi
,
M. J.
Bedzyk
,
R. P. H.
Chang
,
T. J.
Marks
, and
A.
Facchetti
, “
Solution-processed all-oxide transparent high-performance transistors fabricated by spray-combustion synthesis
,”
Adv. Electron. Mater.
2
,
1500427
(
2016
).
88.
D.
Afouxenidis
,
R.
Mazzocco
,
G.
Vourlias
,
P. J.
Livesley
,
A.
Krier
,
W. I.
Milne
,
O.
Kolosov
, and
G.
Adamopoulos
, “
ZnO-based thin film transistors employing aluminum titanate gate dielectrics deposited by spray pyrolysis at ambient air
,”
ACS Appl. Mater. Interfaces
7
,
7334
7341
(
2015
).
89.
I. S.
Hernandez
,
S. I.
Garduno
,
A.
Cerdeira
,
B.
Iniguez
, and
M.
Estrada
, “High mobility Hf-In-ZnO TFTs, with HfO2 as dielectric for low voltage operation range,” in
2021 IEEE Latin America Electron Devices Conference (LAEDC)
(
IEEE
,
2021
), pp.
1
4
.
90.
Y.-K.
Moon
,
S.
Lee
,
D.-H.
Kim
,
J.-H.
Lee
,
C.-O.
Jeong
, and
J.-W.
Park
, “
Characteristics of ZnO based TFT using La2O3 high-k dielectrics
,”
J. Korean Phys. Soc.
55
,
1906
1909
(
2009
).
91.
G.
Gutierrez-Heredia
,
I.
Mejia
,
N.
Hernandez-Como
,
M. E.
Rivas-Aguilar
,
V. H.
Martinez-Landeros
,
F. S.
Aguirre-Tostado
,
B. E.
Gnade
, and
M.
Quevedo
, “
Low temperature ZnO TFTs fabrication with Al and AZO contacts for flexible transparent applications
,”
MRS Proc.
1494
,
299
303
(
2013
).
92.
S.-H.
Choi
, “
High-performance oxide TFTs with co-sputtered indium tin oxide and indium-gallium-zinc oxide at source and drain contacts
,”
IEEE Electron Device Lett.
42
,
168
171
(
2021
).
93.
H.-Y.
Liu
and
Y.-J.
Liao
, “
Investigation of contact resistance between sputter-deposited ITO and mist-CVD-deposited InSnZnO for transparent thin-film transistors applications
,”
ECS J. Solid State Sci. Technol.
12
,
055011
(
2023
).
94.
M.
Miyakawa
,
H.
Tsuji
, and
M.
Nakata
, “
Highly stretchable island-structure metal oxide thin-film transistor arrays using acrylic adhesive for deformable display applications
,”
J. Soc. Inf. Disp.
30
,
699
705
(
2022
).
95.
B.
Wang
,
P.
Guo
,
L.
Zeng
,
X.
Yu
,
A.
Sil
,
W.
Huang
,
M. J.
Leonardi
,
X.
Zhang
,
G.
Wang
,
S.
Lu
,
Z.
Chen
,
M. J.
Bedzyk
,
R. D.
Schaller
,
T. J.
Marks
, and
A.
Facchetti
, “
Expeditious, scalable solution growth of metal oxide films by combustion blade coating for flexible electronics
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
9230
9238
(
2019
).
96.
A.
Tari
and
W. S.
Wong
, “
Selective wet-etch processing of optically transparent flexible InGaZnO thin-film transistors
,”
Appl. Phys. Lett.
107
,
193502
(
2015
).
97.
Y. C.
Kim
,
S. J.
Lee
,
I.-K.
Oh
,
S.
Seo
,
H.
Kim
, and
J.-M.
Myoung
, “
Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide–metal–oxide electrodes
,”
J. Alloys Compd.
688
,
1108
1114
(
2016
).
98.
D. K.
Schroder
, “Semiconductor Material and Device—Google Scholar (n.d.),” see https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=0D.+K.+Schroder%2C+Semiconductor+Material+and+Device+Characterization+%28John+Wiley+%26+Sons%2C+2006%29.&btnG (last accessed October 26, 2023).
99.
L.
Rajan
,
C.
Periasamy
, and
V.
Sahula
, “
Electrical characterization of Au/ZnO thin film Schottky diode on silicon substrate
,”
Perspect. Sci.
8
,
66
68
(
2016
).
You do not currently have access to this content.