Recently, nanostructuration has been proposed to improve the performance of phase change memories. This is the case of superlattices composed of amorphous carbon and crystalline germanium telluride, which we have investigated by molecular dynamics. For this, a modified Stillinger–Weber potential is adapted to reproduce their stiffness contrast/impedance ratio. In order to study the effect of the interface interaction, two sets of parameters are used to model the interfaces with different interactions between the two materials using the properties of the softer material or the average properties between the two creating an adaptation of impedance across the layers. The effects of interface roughness and carbon diffusion at grain boundaries are studied. Using equilibrium molecular dynamics as well as the propagation of wave-packets, we show first that without impedance adaptation, the anisotropy is high, and the roughness has a marked impact on the properties. However, the introduction of impedance adaptation destroys those effects on the thermal conductivity. Finally, we show that the periodic texturing of the interface increases the transmission of in-plane transverse phonons.

1.
M.
Le Gallo
and
A.
Sebastian
, “
An overview of phase-change memory device physics
,”
J. Phys. D: Appl. Phys.
53
,
213002
(
2020
).
2.
R. A.
Kishore
and
S.
Priya
, “
A review on low-grade thermal energy harvesting: Materials, methods and devices
,”
Materials
11
,
1433
(
2018
).
3.
E. S.
Landry
and
A. J. H.
McGaughey
, “
Effect of interfacial species mixing on phonon transport in semiconductor superlattices
,”
Phys. Rev. B
79
,
075316
(
2009
).
4.
J.
Maire
,
R.
Anufriev
,
R.
Yanagisawa
,
A.
Ramiere
,
S.
Volz
, and
M.
Nomura
, “
Heat conduction tuning by wave nature of phonons
,”
Sci. Adv.
3
,
e1700027
(
2017
).
5.
K.
Termentzidis
,
S.
Merabia
,
P.
Chantrenne
, and
P.
Keblinski
, “
Cross-plane thermal conductivity of superlattices with rough interfaces using equilibrium and non-equilibrium molecular dynamics
,”
Int. J. Heat Mass Transf.
54
,
2014
2020
(
2011
).
6.
K.
Termentzidis
,
P.
Chantrenne
, and
P.
Keblinski
, “
Nonequilibrium molecular dynamics simulation of the in-plane thermal conductivity of superlattices with rough interfaces
,”
Phys. Rev. B
79
,
214307
(
2009
).
7.
B.
Qiu
,
G.
Chen
, and
Z.
Tian
, “
Effects of aperiodicity and roughness on coherent heat conduction in superlattices
,”
Nanoscale Microscale Thermophys. Eng.
19
,
272
278
(
2015
).
8.
M. N.
Luckyanova
,
J. A.
Johnson
,
A. A.
Maznev
,
J.
Garg
,
A.
Jandl
,
M. T.
Bulsara
,
E. A.
Fitzgerald
,
K. A.
Nelson
, and
G.
Chen
, “
Anisotropy of the thermal conductivity in GaAs/AlAs superlattices
,”
Nano Lett.
13
,
3973
3977
(
2013
).
9.
J.
Ravichandran
,
A. K.
Yadav
,
R.
Cheaito
,
P. B.
Rossen
,
A.
Soukiassian
,
S.
Suresha
,
J. C.
Duda
,
B. M.
Foley
,
C.-H.
Lee
,
Y.
Zhu
et al., “
Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
,”
Nat. Mater.
13
,
168
172
(
2014
).
10.
B.
Latour
and
Y.
Chalopin
, “
Distinguishing between spatial coherence and temporal coherence of phonons
,”
Phys. Rev. B
95
,
214310
(
2017
).
11.
M.
Zacharias
,
J.
Bläsing
,
P.
Veit
,
L.
Tsybeskov
,
K.
Hirschman
, and
P. M.
Fauchet
, “
Thermal crystallization of amorphous Si/SiO 2 superlattices
,”
Appl. Phys. Lett.
74
,
2614
2616
(
1999
).
12.
L.
Yang
,
B.
Latour
, and
A. J.
Minnich
, “
Phonon transmission at crystalline-amorphous interfaces studied using mode-resolved atomistic green’s functions
,”
Phys. Rev. B
97
,
205306
(
2018
).
13.
A.
France-Lanord
,
S.
Merabia
,
T.
Albaret
,
D.
Lacroix
, and
K.
Termentzidis
, “
Thermal properties of amorphous/crystalline silicon superlattices
,”
J. Phys.: Condens. Matter
26
,
355801
(
2014
).
14.
K.
Termentzidis
,
A.
France-Lanord
,
E.
Blandre
,
T.
Albaret
,
S.
Merabia
,
J.
Valentin
, and
D.
Lacroix
, “
Thermal conductivity of regularly spaced amorphous/crystalline silicon superlattices. A molecular dynamics study
,”
MRS Online Proc. Lib.
1543
,
71
79
(
2013
).
15.
P.
Chen
,
N. A.
Katcho
,
J. P.
Feser
,
W.
Li
,
M.
Glaser
,
O. G.
Schmidt
,
D. G.
Cahill
,
N.
Mingo
, and
A.
Rastelli
, “
Role of surface-segregation-driven intermixing on the thermal transport through planar Si / Ge superlattices
,”
Phys. Rev. Lett.
111
,
115901
(
2013
).
16.
D.
Térébénec
,
N.
Bernier
,
N.
Castellani
,
M.
Bernard
,
J.-B.
Jager
,
M.
Tomelleri
,
J.
Paterson
,
M.-C.
Cyrille
,
N.-P.
Tran
,
V. M.
Giordano
,
F.
Hippert
, and
P.
Noé
, “
Innovative nanocomposites for low power phase-change memory: GeTe/C multilayers
,”
Phys. Status Solidi RRL
16
,
2200054
(
2022
).
17.
R.
Chahine
,
M.
Tomelleri
,
J.
Paterson
,
M.
Bernard
,
N.
Bernier
,
F.
Pierre
,
D.
Rouchon
,
A.
Jannaud
,
C.
Mocuta
,
V. M.
Giordano
,
F.
Hippert
, and
P.
Noé
, “
Nanocomposites of chalcogenide phase-change materials: From c-doping of thin films to advanced multilayers
,”
J. Mater. Chem. C
11
,
269
284
(
2022
).
18.
G.
Betti Beneventi
,
L.
Perniola
,
V.
Sousa
,
E.
Gourvest
,
S.
Maitrejean
,
J.
Bastien
,
A.
Bastard
,
B.
Hyot
,
A.
Fargeix
,
C.
Jahan
,
J.
Nodin
,
A.
Persico
,
A.
Fantini
,
D.
Blachier
,
A.
Toffoli
,
S.
Loubriat
,
A.
Roule
,
S.
Lhostis
,
H.
Feldis
,
G.
Reimbold
,
T.
Billon
,
B.
De Salvo
,
L.
Larcher
,
P.
Pavan
,
D.
Bensahel
,
P.
Mazoyer
,
R.
Annunziata
,
P.
Zuliani
, and
F.
Boulanger
, “
Carbon-doped GeTe: A promising material for phase-change memories
,”
Solid-State Electron.
65-66
,
197
204
(
2011
).
19.
W.-D.
Liu
,
D.-Z.
Wang
,
Q.
Liu
,
W.
Zhou
,
Z.
Shao
, and
Z.-G.
Chen
, “
High-performance GeTe-based thermoelectrics: From materials to devices
,”
Adv. Energy Mater.
10
,
2000367
(
2020
).
20.
J.-Y.
Raty
and
M.
Wuttig
, “
The interplay between peierls distortions and metavalent bonding in IV–VI compounds: Comparing GeTe with related monochalcogenides
,”
J. Phys. D: Appl. Phys.
53
,
234002
(
2020
).
21.
D.
Sarkar
,
S.
Roychowdhury
,
R.
Arora
,
T.
Ghosh
,
A.
Vasdev
,
B.
Joseph
,
G.
Sheet
,
U. V.
Waghmare
, and
K.
Biswas
, “
Metavalent bonding in GeSe leads to high thermoelectric performance
,”
Angew. Chem. Int. Ed.
60
,
10350
10358
(
2021
).
22.
G. C.
Sosso
,
G.
Miceli
,
S.
Caravati
,
J.
Behler
, and
M.
Bernasconi
, “
Neural network interatomic potential for the phase change material GeTe
,”
Phys. Rev. B
85
,
174103
(
2012
).
23.
F.
Li
and
J. S.
Lannin
, “
Radial distribution function of amorphous carbon
,”
Phys. Rev. Lett.
65
,
1905
1908
(
1990
).
24.
C.
de Tomas
,
I.
Suarez-Martinez
, and
N. A.
Marks
, “
Graphitization of amorphous carbons: A comparative study of interatomic potentials
,”
Carbon
109
,
681
693
(
2016
).
25.
F. H.
Stillinger
and
T. A.
Weber
, “
Computer simulation of local order in condensed phases of silicon
,”
Phys. Rev. B
31
,
5262
5271
(
1985
).
26.
K.
Termentzidis
,
P.
Chantrenne
,
J.-Y.
Duquesne
, and
A.
Saci
, “
Thermal conductivity of GaAs/AlAs superlattices and the puzzle of interfaces
,”
J. Phys.: Condens. Matter
22
,
475001
(
2010
).
27.
Y.
Wang
,
C.
Gu
, and
X.
Ruan
, “
Optimization of the random multilayer structure to break the random-alloy limit of thermal conductivity
,”
Appl. Phys. Lett.
106
,
073104
(
2015
).
28.
A.
Tlili
,
V. M.
Giordano
,
Y. M.
Beltukov
,
P.
Desmarchelier
,
S.
Merabia
, and
A.
Tanguy
, “
Enhancement and anticipation of the Ioffe–Regel crossover in amorphous/nanocrystalline composites
,”
Nanoscale
11
,
21502
21512
(
2019
).
29.
J.
Chen
,
G.
Zhang
, and
B.
Li
, “
Tunable thermal conductivity of Si 1 x Ge x nanowires
,”
Appl. Phys. Lett.
95
,
073117
(
2009
).
30.
J.
Tersoff
, “
Empirical interatomic potential for silicon with improved elastic properties
,”
Phys. Rev. B
38
,
9902
9905
(
1988
).
31.
C.
Fusco
,
T.
Albaret
, and
A.
Tanguy
, “
Role of local order in the small-scale plasticity of model amorphous materials
,”
Phys. Rev. E
82
,
066116
(
2010
).
32.
R.
Vink
,
G.
Barkema
,
W.
van der Weg
, and
N.
Mousseau
, “
Fitting the Stillinger–Weber potential to amorphous silicon
,”
J. Non-Cryst. Solids
282
,
248
255
(
2001
).
33.
M.
Verdier
,
D.
Lacroix
, and
K.
Termentzidis
, “
Roughness and amorphization impact on thermal conductivity of nanofilms and nanowires: Making atomistic modeling more realistic
,”
J. Appl. Phys.
126
,
164305
(
2019
).
34.
E.
Blandre
,
L.
Chaput
,
S.
Merabia
,
D.
Lacroix
, and
K.
Termentzidis
, “
Modeling the reduction of thermal conductivity in core/shell and diameter-modulated silicon nanowires
,”
Phys. Rev. B
91
,
115404
(
2015
).
35.
A. J.
Bullen
,
K. E.
O’Hara
,
D. G.
Cahill
,
O.
Monteiro
, and
A.
von Keudell
, “
Thermal conductivity of amorphous carbon thin films
,”
J. Appl. Phys.
88
,
6317
6320
(
2000
).
36.
K.
Persson
, (
2014
). “Materials data on GeTe (Sg:160) by materials project,” DOE https://doi.org/10.17188/1272924.
37.
G.
Clavier
,
N.
Desbiens
,
E.
Bourasseau
,
V.
Lachet
,
N.
Brusselle-Dupend
, and
B.
Rousseau
, “
Computation of elastic constants of solids using molecular simulation: Comparison of constant volume and constant pressure ensemble methods
,”
Mol. Simul.
43
,
1413
1422
(
2017
).
38.
R.
Shaltaf
,
E.
Durgun
,
J.-Y.
Raty
,
P.
Ghosez
, and
X.
Gonze
, “
Dynamical, dielectric, and elastic properties of GeTe investigated with first-principles density functional theory
,”
Phys. Rev. B
78
,
205203
(
2008
).
39.
R.
Jana
,
D.
Savio
,
V. L.
Deringer
, and
L.
Pastewka
, “
Structural and elastic properties of amorphous carbon from simulated quenching at low rates
,”
Modell. Simul. Mater. Sci. Eng.
27
,
085009
(
2019
).
40.
S.
Merabia
and
K.
Termentzidis
, “
Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics
,”
Phys. Rev. B
86
,
094303
(
2012
).
41.
E. T.
Swartz
and
R. O.
Pohl
, “
Thermal boundary resistance
,”
Rev. Mod. Phys.
61
,
605
668
(
1989
).
42.
P.
Desmarchelier
,
A.
Carré
,
K.
Termentzidis
, and
A.
Tanguy
, “
Ballistic heat transport in nanocomposite: The role of the shape and interconnection of nanoinclusions
,”
Nanomaterials
11
(8),
1982
(
2021
).
43.
P. B.
Allen
and
J. L.
Feldman
, “
Thermal conductivity of disordered harmonic solids
,”
Phys. Rev. B
48
,
12581
12588
(
1993
).
44.
Y. M.
Beltukov
,
C.
Fusco
,
D. A.
Parshin
, and
A.
Tanguy
, “
Boson peak and Ioffe-Regel criterion in amorphous siliconlike materials: The effect of bond directionality
,”
Phys. Rev. E
93
,
023006
(
2016
).
45.
A.
France-Lanord
,
E.
Blandre
,
T.
Albaret
,
S.
Merabia
,
D.
Lacroix
, and
K.
Termentzidis
, “
Atomistic amorphous/crystalline interface modelling for superlattices and core/shell nanowires
,”
J. Phys.: Condens. Matter
26
,
055011
(
2014
).
46.
K.-H.
Lin
and
A.
Strachan
, “
Thermal transport in SiGe superlattice thin films and nanowires: Effects of specimen and periodic lengths
,”
Phys. Rev. B
87
,
115302
(
2013
).
47.
Y.
Peng
,
J.U.
Thiele
,
G.
Ju
,
T.
Nolan
,
Y.
Ding
, and
A.
Wu
, “Recording layer for heat assisted magnetic recording,” U.S. patent 8507114B2 (30 June 2011).
48.
A.
Rajabpour
,
S. M.
Vaez Allaei
,
Y.
Chalopin
,
F.
Kowsary
, and
S.
Volz
, “
Tunable superlattice in-plane thermal conductivity based on asperity sharpness at interfaces: Beyond Ziman’s model of specularity
,”
J. Appl. Phys.
110
,
113529
(
2011
).
49.
M.
Hu
,
J. V.
Goicochea
,
B.
Michel
, and
D.
Poulikakos
, “
Thermal rectification at water/functionalized silica interfaces
,”
Appl. Phys. Lett.
95
,
151903
(
2009
).
50.
G. C.
Sosso
,
V. L.
Deringer
,
S. R.
Elliott
, and
G.
Csányi
, “
Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials
,”
Mol. Simul.
44
,
866
880
(
2018
).
51.
B.
Bhattarai
,
A.
Pandey
, and
D.
Drabold
, “
Evolution of amorphous carbon across densities: An inferential study
,”
Carbon
131
,
168
174
(
2018
).
52.
T.
Damart
,
V. M.
Giordano
, and
A.
Tanguy
, “
Nanocrystalline inclusions as a low-pass filter for thermal transport in a-Si
,”
Phys. Rev. B
92
,
094201
(
2015
).
53.
M.
Samanta
,
T.
Ghosh
,
R.
Arora
,
U. V.
Waghmare
, and
K.
Biswas
, “
Realization of both n- and p-Type GeTe thermoelectrics: Electronic structure modulation by AgBiSe 2 alloying
,”
J. Am. Chem. Soc.
141
,
19505
19512
(
2019
).
54.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
, “
Comparison of atomic-level simulation methods for computing thermal conductivity
,”
Phys. Rev. B
65
,
144306
(
2002
).
55.
M. T.
Dove
, “Time correlation functions,” in Introduction to Lattice Dynamics, Cambridge Topics in Mineral Physics and Chemistry (Cambridge University Press, 1993), pp. 229–232.
56.
A.
Savitzky
and
M. J.
Golay
, “
Smoothing and differentiation of data by simplified least squares procedures
,”
Anal. Chem.
36
,
1627
1639
(
1964
).
57.
J. P.
Boon
and
S.
Yip
,
Molecular Hydrodynamics
(
Courier Corporation
,
1991
).
58.
P.
Desmarchelier
,
A.
Tanguy
, and
K.
Termentzidis
, “
Thermal rectification in asymmetric two-phase nanowires
,”
Phys. Rev. B
103
,
014202
(
2021
).
59.
Y. M.
Beltukov
,
V. I.
Kozub
, and
D. A.
Parshin
, “
Ioffe-Regel criterion and diffusion of vibrations in random lattices
,”
Phys. Rev. B
87
,
134203
(
2013
).
You do not currently have access to this content.