The current study is centered on the application of magnetically targeted drug delivery in a constricted vertical bifurcated artery utilizing Fe 3O 4 nanoparticles. The arterial stenosis is characterized by a bell-shaped narrowing in the parent artery and overlapping narrowing in the daughter artery. The blood is regarded as exhibiting the rheological behavior of a Casson fluid. The temperature-dependent nature of blood viscosity is postulated, and Reynold’s viscosity model describes it. This study examines the impact of electromagnetohydrodynamics (EMHD), body acceleration, Joule heating, and viscous dissipation. The assumption of a no-slip velocity condition is made at the walls of the artery. The governing equations are subjected to a process of non-dimensionalization and simplification, employing the mild-stenosis approximation. The resulting equations are subsequently solved in MATLAB by employing the finite-difference Crank–Nicolson technique. Entropy plays a significant role during any treatment or surgery; therefore, the present problem addresses entropy generation minimization. The results for velocity, temperature, wall shear stress, flow rate, impedance, heat transfer rate, entropy generation number, and Bejan number are represented graphically. The velocity contours illustrate that the flow velocity enhances with the Casson fluid and particle mass parameters. Furthermore, the number of trapped bolus also increases in the daughter artery. The nanofluid velocity and particle velocity decrease with an increase in the particle concentration parameter in the parent artery and the daughter artery. Entropy declines with the temperature difference parameter increment, whereas the Bejan number enhances. Magnetite (Fe 3O 4) nanoparticles have various applications owing to their biocompatibility, elevated magnetic susceptibility, chemical stability, non-toxic nature, and cost-effectiveness.

1.
D. N.
Ku
and
D. P.
Giddens
, “
Pulsatile flow in a model carotid bifurcation
,”
Arteriosclerosis
3
(
1
),
31
39
(
1983
).
2.
T.
Seo
, “
Numerical simulations of blood flow in arterial bifurcation models
,”
Korea-Australia Rheol. J.
25
,
153
161
(
2013
).
3.
B.
Zhang
,
Y.
Jin
,
X.
Wang
,
T.
Zeng
, and
L.
Wang
, “
Numerical simulation of transient blood flow through the left coronary artery with varying degrees of bifurcation angles
,”
J. Mechanics Med. Biol.
17
(
01
),
1750005
(
2017
).
4.
R.
Ponalagusamy
and
S.
Priyadharshini
, “
Pulsatile mhd flow of a Casson fluid through a porous bifurcated arterial stenosis under periodic body acceleration
,”
Appl. Math. Comput.
333
,
325
343
(
2018
).
5.
I.
Shahzadi
,
S.
Suleman
,
S.
Saleem
, and
S.
Nadeem
, “
Utilization of cu-nanoparticles as medication agent to reduce atherosclerotic lesions of a bifurcated artery having compliant walls
,”
Comput. Methods Progr. Biomed.
184
,
105123
(
2020
).
6.
A.
Dubey
,
B.
Vasu
,
O. A.
Bég
, and
R.
Gorla
, “
Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model
,”
Microvasc. Res.
138
,
104221
(
2021
).
7.
M.
Rezazadeh
and
R.
Ostadi
, “
Numerical simulation of the wall shear stress distribution in a carotid artery bifurcation
,”
J. Mechanic. Sci. Technol.
36
(
10
),
5035
5046
(
2022
).
8.
N. M.
Zain
and
Z.
Ismail
, “
Numerical solution of magnetohydrodynamics effects on a generalised power law fluid model of blood flow through a bifurcated artery with an overlapping shaped stenosis
,”
PLoS One
18
(
2
),
e0276576
(
2023
).
9.
S.
Charm
and
G.
Kurland
, “
Viscometry of human blood for shear rates of 0-100,000 sec 1
,”
Nature
206
,
617
618
(
1965
).
10.
E.
Merrill
,
A.
Benis
,
E.
Gilliland
,
T.
Sherwood
, and
E.
Salzman
, “
Pressure-flow relations of human blood in hollow fibers at low flow rates
,”
J. Appl. Physiol.
20
(
5
),
954
967
(
1965
).
11.
F.
Gentile
,
M.
Ferrari
, and
P.
Decuzzi
, “
The transport of nanoparticles in blood vessels: The effect of vessel permeability and blood rheology
,”
Ann. Biomed. Eng.
36
(
2
),
254
261
(
2008
).
12.
S.
Shaw
,
P.
Murthy
, and
S.
Pradhan
, “
The effect of body acceleration on two dimensional flow of Casson fluid through an artery with asymmetric stenosis
,”
Open Conserv. Biol. J.
2
(
1
),
55
68
(
2010
).
13.
S.
Priyadharshini
and
R.
Ponalagusamy
, “
Mathematical modelling for pulsatile flow of Casson fluid along with magnetic nanoparticles in a stenosed artery under external magnetic field and body acceleration
,”
Neur. Comput. Appl.
31
,
813
826
(
2019
).
14.
D. F.
Jamil
,
S.
Saleem
,
R.
Roslan
,
F. S.
Al-Mubaddel
,
M.
Rahimi-Gorji
,
A.
Issakhov
, and
S. U.
Din
, “
Analysis of non-Newtonian magnetic Casson blood flow in an inclined stenosed artery using Caputo-Fabrizio fractional derivatives
,”
Comput. Methods Progr. Biomed.
203
,
106044
(
2021
).
15.
M.
Ramamoorthy
and
L.
Pallavarapu
, “
Second order slip flow of a conducting jeffrey nanofluid in an inclined asymmetric porous conduit with heat and mass transfer
,”
Multidiscipl. Model. Mater. Struct.
18
(
6
),
1016
1038
(
2022
).
16.
H.
Shahzad
,
X.
Wang
,
A.
Ghaffari
,
K.
Iqbal
,
M. B.
Hafeez
,
M.
Krawczuk
, and
W.
Wojnicz
, “
Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls
,”
Sci. Rep.
12
(
1
),
12219
(
2022
).
17.
R.
Gandhi
,
B. K.
Sharma
,
N. K.
Mishra
, and
Q. M.
Al-Mdallal
, “
Computer simulations of emhd Casson nanofluid flow of blood through an irregular stenotic permeable artery: Application of Koo-Kleinstreuer-Li correlations
,”
Nanomaterials
13
(
4
),
652
(
2023
).
18.
A. H.
Majeed
,
R.
Mahmood
,
H.
Shahzad
,
A. A.
Pasha
,
Z.
Raizah
,
H. A.
Hosham
,
D. S. K.
Reddy
, and
M. B.
Hafeez
, “
Heat and mass transfer characteristics in MHD Casson fluid flow over a cylinder in a wavy channel: Higher-order FEM computations
,”
Case Stud. Therm. Eng.
42
,
102730
(
2023
).
19.
M.
Ajithkumar
,
P.
Lakshminarayana
, and
K.
Vajravelu
, “
Peristaltic transport of MHD Ree–Eyring fluid through a flexible channel under the influence of activation energy
,”
Phys. Fluids
35
(
6
),
063122
(
2023
).
20.
R.
Gandhi
,
B.
Sharma
,
Q. M.
Al-Mdallal
, and
H.
Mittal
, “
Entropy generation and shape effects analysis of hybrid nanoparticles (Cu-Al 2O 3/blood) mediated blood flow through a time-variant multi-stenotic artery
,”
Int. J. Thermofluids
18
,
100336
(
2023
).
21.
M.
Ajithkumar
,
P.
Lakshminarayana
, and
K.
Vajravelu
, “
Diffusion effects on mixed convective peristaltic flow of a bi-viscous Bingham nanofluid through a porous medium with convective boundary conditions
,”
Phys. Fluids
35
(
3
),
032008
(
2023
).
22.
R.
Gandhi
,
B.
Sharma
,
C.
Kumawat
, and
O. A.
Bég
, “
Modeling and analysis of magnetic hybrid nanoparticle ( Au - Al 2O 3/blood) based drug delivery through a bell-shaped occluded artery with joule heating, viscous dissipation and variable viscosity effects
,”
Proc. Instit. Mechanic. Eng. E
236
(
5
),
2024
2043
(
2022
).
23.
K. S.
Mekheimer
,
R.
Abo-Elkhair
,
S. I.
Abdelsalam
,
K. K.
Ali
, and
A.
Moawad
, “
Biomedical simulations of nanoparticles drug delivery to blood hemodynamics in diseased organs: Synovitis problem
,”
Int. Commun. Heat Mass Transfer.
130
,
105756
(
2022
).
24.
M.
Ajithkumar
and
P.
Lakshminarayana
, “
Chemically reactive MHD peristaltic flow of Jeffrey nanofluid via a vertical porous conduit with complaint walls under the effects of bioconvection and double diffusion
,”
Int. J. Modern Phys. B
(published online 2023).
25.
B.
Sharma
,
R.
Gandhi
,
T.
Abbas
, and
M.
Bhatti
, “
Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery
,”
Appl. Math. Mech.
44
(
3
),
459
476
(
2023
).
26.
T.-Q.
Tang
,
M.
Rooman
,
Z.
Shah
,
M. A.
Jan
,
N.
Vrinceanu
, and
M.
Racheriu
, “
Computational study and characteristics of magnetized gold-blood Oldroyd-B nanofluid flow and heat transfer in stenosis narrow arteries
,”
J. Magn. Magn. Mater.
569
,
170448
(
2023
).
27.
M.
Ajithkumar
and
P.
Lakshminarayana
, “
MHD peristaltic flow of chemically reactive Casson nanofluid in a nonuniform porous inclined flexible channel with cross-diffusion effects
,”
Int. J. Modern Phys. B
37
,
2350292
(
2023
).
28.
U.
Khanduri
,
B. K.
Sharma
,
M.
Sharma
,
N. K.
Mishra
, and
N.
Saleem
, “
Sensitivity analysis of electroosmotic magnetohydrodynamics fluid flow through the curved stenosis artery with thrombosis by response surface optimization
,”
Alexandria Eng. J.
75
,
1
27
(
2023
).
29.
C. C.
Berry
and
A. S.
Curtis
, “
Functionalisation of magnetic nanoparticles for applications in biomedicine
,”
J. Phys. D: Appl. Phys.
36
(
13
),
R198
(
2003
).
30.
E. J.
Furlani
and
E. P.
Furlani
, “
A model for predicting magnetic targeting of multifunctional particles in the microvasculature
,”
J. Magn. Magn. Mater.
312
(
1
),
187
193
(
2007
).
31.
S.
Sharma
,
V.
Katiyar
, and
U.
Singh
, “
Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field
,”
J. Magn. Magn. Mater.
379
,
102
107
(
2015
).
32.
C. G. N.
Ketchate
,
P. T.
Kapen
,
D.
Fokwa
, and
G.
Tchuen
, “
Stability analysis of non-Newtonian blood flow conveying hybrid magnetic nanoparticles as target drug delivery in presence of inclined magnetic field and thermal radiation: Application to therapy of cancer
,”
Informat. Med. Unlocked
27
,
100800
(
2021
).
33.
B.
Sharma
,
A.
Kumar
,
R.
Gandhi
, and
M.
Bhatti
, “
Exponential space and thermal-dependent heat source effects on electro-magneto-hydrodynamic Jeffrey fluid flow over a vertical stretching surface
,”
Int. J. Modern Phys. B
36
(
30
),
2250220
(
2022
).
34.
S.
Vinod
and
J.
Philip
, “
Thermal and rheological properties of magnetic nanofluids: Recent advances and future directions
,”
Adv. Colloid Interface Sci.
307
,
102729
(
2022
).
35.
J.
Philip
, “
Magnetic nanofluids: Recent advances, applications, challenges, and future directions
,”
Adv. Colloid Interface Sci.
311
,
102810
(
2022
).
36.
B.
Sharma
,
R.
Gandhi
, and
M.
Bhatti
, “
Entropy analysis of thermally radiating MHD slip flow of hybrid nanoparticles ( Au Al 2O 3/blood) through a tapered multi-stenosed artery
,”
Chem. Phys. Lett.
790
,
139348
(
2022
).
37.
M. H.
Shahzad
,
A. U.
Awan
,
S.
Akhtar
, and
S.
Nadeem
, “
Entropy and stability analysis on blood flow with nanoparticles through a stenosed artery having permeable walls
,”
Sci. Progr.
105
(
2
),
00368504221096000
(
2022
).
38.
B.
Sharma
,
R.
Gandhi
,
N. K.
Mishra
, and
Q. M.
Al-Mdallal
, “
Entropy generation minimization of higher-order endothermic/exothermic chemical reaction with activation energy on mhd mixed convective flow over a stretching surface
,”
Sci. Rep.
12
(
1
),
17688
(
2022
).
39.
R.
Gandhi
,
B. K.
Sharma
, and
O. D.
Makinde
, “
Entropy analysis for MHD blood flow of hybrid nanoparticles ( Au - Al 2O 3/blood) of different shapes through an irregular stenosed permeable walled artery under periodic body acceleration: Hemodynamical applications
,”
Z. Angew. Math. Mech.
(published online 2022).
40.
B. K.
Sharma
,
A.
Kumar
,
R.
Gandhi
,
M. M.
Bhatti
, and
N. K.
Mishra
, “
Entropy generation and thermal radiation analysis of EMHD Jeffrey nanofluid flow: Applications in solar energy
,”
Nanomaterials
13
(
3
),
544
(
2023
).
41.
R.
Gandhi
and
B.
Sharma
, “Modelling pulsatile blood flow using Casson fluid model through an overlapping stenotic artery with Au-Cu hybrid nanoparticles: Varying viscosity approach,” in International Workshop of Mathematical Modelling, Applied Analysis and Computation (Springer, 2022), pp. 155–176.
42.
K. S.
Mekheimer
,
I.
Shahzadi
,
S.
Nadeem
,
A.
Moawad
, and
A.
Zaher
, “
Reactivity of bifurcation angle and electroosmosis flow for hemodynamic flow through aortic bifurcation and stenotic wall with heat transfer
,”
Phys. Scr.
96
(
1
),
015216
(
2020
).
43.
R.
Ellahi
,
M.
Raza
, and
K.
Vafai
, “
Series solutions of non-Newtonian nanofluids with Reynolds’ model and Vogel’s model by means of the homotopy analysis method
,”
Math. Comput. Modell.
55
(
7–8
),
1876
1891
(
2012
).
44.
R.
Gandhi
and
B. K.
Sharma
, “Unsteady mhd hybrid nanoparticle ( Au - Al 2O 3/blood) mediated blood flow through a vertical irregular stenosed artery: Drug delivery applications,” in Nonlinear Dynamics and Applications: Proceedings of the ICNDA 2022 (Springer, 2022), pp. 325–337.
45.
S.
Majee
and
G.
Shit
, “
Modeling and simulation of blood flow with magnetic nanoparticles as carrier for targeted drug delivery in the stenosed artery
,”
Eur. J. Mechan. B/Fluids
83
,
42
57
(
2020
).
46.
J. D.
Anderson
and
J.
Wendt
,
Computational Fluid Dynamics
(
Springer
,
1995
), Vol. 206.
47.
R.
Manchi
and
R.
Ponalagusamy
, “
Pulsatile flow of EMHD micropolar hybrid nanofluid in a porous bifurcated artery with an overlapping stenosis in the presence of body acceleration and Joule heating
,”
Braz. J. Phys.
52
(
2
),
52
(
2022
).
48.
S.
Sharma
,
U.
Singh
, and
V.
Katiyar
, “
Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube
,”
J. Magn. Magn. Mater.
377
,
395
401
(
2015
).
49.
B.
Zhang
,
J.
Gu
,
M.
Qian
,
L.
Niu
,
H.
Zhou
, and
D.
Ghista
, “
Correlation between quantitative analysis of wall shear stress and intima-media thickness in atherosclerosis development in carotid arteries
,”
Biomed. Eng. Online
16
(
1
),
137
(
2017
).
You do not currently have access to this content.