The capacities of various interatomic potentials available for elemental germanium, with the scope to choose the potential suitable for the modeling of germanene (2D germanium) allotropes,f were investigated. Structural and mechanical properties of the flat, low-buckled, trigonal dumbbell, and large honeycomb dumbbell single-layer germanium (germanene) phases, were obtained using the density functional theory and molecular statics computations with Tersoff, modified embedded atom method, Stillinger–Weber, environment-dependent interatomic potential, ReaxFF, and machine-learning-based interatomic potentials. A systematic quantitative comparative study and discussion of the findings are given.
REFERENCES
1.
K. S.
Novoselov
, A. K.
Geim
, S. V.
Morozov
, D.
Jiang
, Y.
Zhang
, S. V.
Dubonos
, I. V.
Grigorieva
, and A. A.
Firsov
, “Electric field effect in atomically thin carbon films
,” Science
306
, 666
–669
(2004
). 2.
M. N.
Gjerding
, A.
Taghizadeh
, A.
Rasmussen
, S.
Ali
, F.
Bertoldo
, T.
Deilmann
, N. R.
Knøsgaard
, M.
Kruse
, A. H.
Larsen
, S.
Manti
, T. G.
Pedersen
, U.
Petralanda
, T.
Skovhus
, M. K.
Svendsen
, J. J.
Mortensen
, T.
Olsen
, and K. S.
Thygesen
, “Recent progress of the computational 2D materials database (C2DB)
,” 2D Mater.
8
, 044002
(2021
). 3.
J.
Yuhara
and G. L.
Lay
, “Beyond silicene: Synthesis of germanene, stanene and plumbene
,” Jpn. J. Appl. Phys.
59
, SN0801
(2020
). 4.
L. M.
Hale
, Z. T.
Trautt
, and C. A.
Becker
, “Evaluating variability with atomistic simulations: The effect of potential and calculation methodology on the modeling of lattice and elastic constants
,” Modell. Simul. Mater. Sci. Eng.
26
, 055003
(2018
). 5.
E. B.
Tadmor
, R. S.
Elliott
, J. P.
Sethna
, R. E.
Miller
, and C. A.
Becker
, “The potential of atomistic simulations and the knowledgebase of interatomic models
,” JOM
63
, 17
(2011
). 6.
E. N.
Sgourou
, A.
Daskalopulu
, L. H.
Tsoukalas
, G.
Stamoulis
, R. V.
Vovk
, and A.
Chroneos
, “Seventy-five years since the point-contact transistor: Germanium revisited
,” Appl. Sci.
12
, 11993
(2022
). 7.
F.
Matusalem
, M.
Marques
, L. K.
Teles
, and F.
Bechstedt
, “Stability and electronic structure of two-dimensional allotropes of group-IV materials
,” Phys. Rev. B
92
, 045436
(2015
). 8.
C.-E.
Hsu
, Y.-T.
Lee
, C.-C.
Wang
, C.-Y.
Lin
, Y.
Yamada-Takamura
, T.
Ozaki
, and C.-C.
Lee
, “Atomically thin metallic Si and Ge allotropes with high Fermi velocities
,” Phys. Rev. B
107
, 115410
(2023
). 9.
S. J.
Mahdizadeh
and G.
Akhlamadi
, “Optimized Tersoff empirical potential for germanene
,” J. Mol. Graph. Modell.
72
, 1
–5
(2017
). 10.
A. K. A.
Kandy
, K.
Rossi
, A.
Raulin-Foissac
, G.
Laurens
, and J.
Lam
, “Comparing transferability in neural network approaches and linear models for machine-learning interaction potentials
,” Phys. Rev. B
107
, 174106
(2023
). 11.
S. M.
Rassoulinejad-Mousavi
and Y.
Zhang
, “Interatomic potentials transferability for molecular simulations: A comparative study for platinum, gold and silver
,” Sci. Rep.
8
, 2424
(2018
). 12.
C.
de Tomas
, A.
Aghajamali
, J. L.
Jones
, D. J.
Lim
, M. J.
López
, I.
Suarez-Martinez
, and N. A.
Marks
, “Transferability in interatomic potentials for carbon
,” Carbon
155
, 624
–634
(2019
). 13.
S.
Winczewski
, M. Y.
Shaheen
, and J.
Rybicki
, “Interatomic potential suitable for the modeling of penta-graphene: Molecular statics/molecular dynamics studies
,” Carbon
126
, 165
–175
(2018
). 14.
M.
Maździarz
, “Transferability of interatomic potentials for silicene
,” Beilstein J. Nanotechnol.
14
, 574
–585
(2023
). 15.
P.
Hohenberg
and W.
Kohn
, “Inhomogeneous electron gas
,” Phys. Rev.
136
, B864
–B871
(1964
). 16.
W.
Kohn
and L. J.
Sham
, “Self-consistent equations including exchange and correlation effects
,” Phys. Rev.
140
, A1133
–A1138
(1965
). 17.
D. R.
Hamann
, X.
Wu
, K. M.
Rabe
, and D.
Vanderbilt
, “Metric tensor formulation of strain in density-functional perturbation theory
,” Phys. Rev. B
71
, 035117
(2005
). 18.
X.
Gonze
, B.
Amadon
, G.
Antonius
, F.
Arnardi
, L.
Baguet
, J.-M.
Beuken
, J.
Bieder
, F.
Bottin
, J.
Bouchet
, E.
Bousquet
, N.
Brouwer
, F.
Bruneval
, G.
Brunin
, T.
Cavignac
, J.-B.
Charraud
, W.
Chen
, M.
Côté
, S.
Cottenier
, J.
Denier
, G.
Geneste
, P.
Ghosez
, M.
Giantomassi
, Y.
Gillet
, O.
Gingras
, D. R.
Hamann
, G.
Hautier
, X.
He
, N.
Helbig
, N.
Holzwarth
, Y.
Jia
, F.
Jollet
, W.
Lafargue-Dit-Hauret
, K.
Lejaeghere
, M. A.
Marques
, A.
Martin
, C.
Martins
, H. P.
Miranda
, F.
Naccarato
, K.
Persson
, G.
Petretto
, V.
Planes
, Y.
Pouillon
, S.
Prokhorenko
, F.
Ricci
, G.-M.
Rignanese
, A. H.
Romero
, M. M.
Schmitt
, M.
Torrent
, M. J.
van Setten
, B. V.
Troeye
, M. J.
Verstraete
, G.
Zérah
, and J. W.
Zwanziger
, “The ABINIT project: Impact, environment and recent developments
,” Comput. Phys. Commun.
248
, 107042
(2020
). 19.
S.
Plimpton
, “Fast parallel algorithms for short-range molecular dynamics
,” J. Comput. Phys.
117
, 1
–19
(1995
). 20.
A.
Stukowski
, “Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool (http://ovito.org/)
,” Modell. Simul. Mater. Sci. Eng.
18
, 015012
(2010
). 21.
J.
Tersoff
, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
,” Phys. Rev. B
39
, 5566
–5568
(1989
). 22.
E. H.
Kim
, Y.-H.
Shin
, and B.-J.
Lee
, “A modified embedded-atom method interatomic potential for germanium
,” Calphad
32
, 34
–42
(2008
). 23.
K.
Ding
and H. C.
Andersen
, “Molecular-dynamics simulation of amorphous germanium
,” Phys. Rev. B
34
, 6987
–6991
(1986
). 24.
M.
Posselt
and A.
Gabriel
, “Atomistic simulation of amorphous germanium and its solid phase epitaxial recrystallization
,” Phys. Rev. B
80
, 045202
(2009
). 25.
V. I.
Belko
, V. E.
Gusakov
, and N. N.
Dorozhkin
, “Potential EDIP for germanium: Parameterization and molecular dynamics simulation of point defects,” in Proceedings of IV International Conference, Materials and Structures of Modern Electronics (Minsk, Belarus, 2010), pp. 15–18.26.
G.
Psofogiannakis
and A. C.
van Duin
, “Development of a ReaxFF reactive force field for Si/Ge/H systems and application to atomic hydrogen bombardment of Si, Ge, and SiGe (100) surfaces
,” Surf. Sci.
646
, 253
–260
(2016
). 27.
Y.
Zuo
, C.
Chen
, X.
Li
, Z.
Deng
, Y.
Chen
, J.
Behler
, G.
Csányi
, A. V.
Shapeev
, A. P.
Thompson
, M. A.
Wood
, and S. P.
Ong
, “Performance and cost assessment of machine learning interatomic potentials
,” J. Phys. Chem. A
124
, 731
–745
(2020
). 28.
N. C.
Nguyen
and A.
Rohskopf
, “Proper orthogonal descriptors for efficient and accurate interatomic potentials
,” J. Comput. Phys.
480
, 112030
(2023
). 29.
N. J.
Roome
and J. D.
Carey
, “Beyond graphene: Stable elemental monolayers of silicene and Germanene
,” ACS Appl. Mater. Interfaces
6
, 7743
–7750
(2014
). 30.
A. J.
Mannix
, B.
Kiraly
, M. C.
Hersam
, and N. P.
Guisinger
, “Synthesis and chemistry of elemental 2D materials
,” Nat. Rev. Chem.
1
, 0014
(2017
). 31.
M.
Maździarz
, “Comment on “The computational 2D materials database: High-throughput modeling and discovery of atomically thin crystals”
,” 2D Mater.
6
, 048001
(2019
). 32.
R.
John
and B.
Merlin
, “Theoretical investigation of structural, electronic, and mechanical properties of two dimensional C, Si, Ge, Sn
,” Cryst. Struct. Theory Appl.
5
, 43
–55
(2016
). 33.
S.
Cahangirov
, M.
Topsakal
, E.
Aktürk
, H.
Şahin
, and S.
Ciraci
, “Two- and one-dimensional honeycomb structures of silicon and germanium
,” Phys. Rev. Lett.
102
, 236804
(2009
). 34.
Y.
Han
, J.
Dong
, G.
Qin
, and M.
Hu
, “Phonon transport in the ground state of two-dimensional silicon and germanium
,” RSC Adv.
6
, 69956
–69965
(2016
). 35.
M.
Maździarz
, “Transferability of molecular potentials for 2D molybdenum disulphide
,” Materials
14
, 519
(2021
). © 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.