The effect of subnanosecond laser pulses on the structure and electronic subsystem of extended defects in cubic semiconductors was studied using cadmium telluride (CdTe) as an example. A CdTe epitaxial film containing threading dislocations was exposed to pulsed laser emission at helium temperatures. This exposure led to a local rearrangement of dislocation, while the properties of the crystal lattice remained undisturbed. The rearrangement was visualized in situ via an observation of the single luminescent centers associated with the partial dislocation cores. The rearrangements in the center of the laser spot, as well as those far from this location, were detected, thus revealing the laser treatment’s non-thermal, relatively long-range influence. We associated the corresponding mechanism with Peierls’s gliding of dislocation under the impact of laser-induced hypersonic surface waves. The results we obtained are of interest in the development of all-optical methods for the local laser processing of extended defects in CdTe and subsequent expansion those methods to other A 2B 6 cubic semiconductors.

1.
P.
Callahan
,
B.
Haidet
,
D.
Jung
,
G.
Seward
, and
K.
Mukherjee
,
Phys. Rev. Mater.
2
,
081601(R)
(
2018
).
2.
B.
Bonef
,
R.
Shah
, and
K.
Mukherjee
,
Nano Lett.
19
,
1428
(
2019
).
3.
A.
Nakamura
,
X.
Fang
,
A.
Matsubara
,
E.
Tochigi
,
Y.
Oshima
,
T.
Saito
,
T.
Yokoi
,
Y.
Ikuhara
, and
K.
Matsunaga
,
Nano Lett.
21
,
1962
(
2021
).
4.
W.
Pan
,
S. K.
Nath
,
S.
Ma
,
R.
Gu
,
Z.
Zhang
,
L.
Fu
,
L.
Faraone
, and
W.
Lei
,
J. Appl. Phys.
131
,
205304
(
2022
).
5.
C.
Buis
,
E. G.
d’Aillon
,
A.
Lohstroh
,
G.
Marrakchi
,
C.
Jeynes
, and
L.
Verger
,
Nucl. Instrum. Methods Phys. Res., Sect. A
735
,
188
(
2014
).
6.
J.-H.
Hur
and
S.
Jeon
,
Sci. Rep.
6
,
22001
(
2016
).
7.
E.
Maras
,
M.
Saito
,
K.
Inoue
,
H.
Jonsson
,
Y.
Ikuhara
, and
K. P.
McKenna
,
Acta Mater.
163
,
199
(
2019
).
8.
C.
McElfresh
,
Y.
Cui
,
S. L.
Dudarev
,
G.
Po
, and
J.
Marian
,
Int. J. Plast.
136
,
102848
(
2021
).
9.
J.
Li
,
K.
Luo
, and
Q.
An
,
Int. J. Plast.
163
,
103552
(
2023
).
10.
J. P.
Hirth
and
J.
Lothe
,
Theory of Dislocations
(
Wiley
,
New York
,
1982
).
11.
J.
Salamania
,
D. G.
Sangiovanni
,
A.
Kraych
,
K. M. C.
Kwick
,
I. C.
Schramm
,
L. J. S.
Johnson
,
R.
Boyd
,
B.
Bakhit
,
T. W.
Hsu
,
M.
Mrovec
,
L.
Rogström
,
F.
Tasnádi
,
I. A.
Abrikosov
, and
M.
Odén
,
Mater. Des.
224
,
111327
(
2022
).
12.
M.
Tan
,
T.
Gao
,
Q.
Xiao
,
Y.
Gao
,
Y.
Liu
,
Q.
Xie
,
Q.
Chen
,
Z.
Tian
,
Y.
Liang
, and
B.
Wang
,
Mater. Sci. Semicond. Process.
142
,
106468
(
2022
).
13.
L.
Huang
,
X.
Wu
,
Y.
Zou
,
M.
Li
, and
R.
Wang
,
Scr. Mater.
207
,
114276
(
2022
).
14.
K.
Matsunaga
,
S.
Hoshino
,
M.
Ukita
,
Y.
Oshima
,
T.
Yokoi
, and
A.
Nakamura
,
Acta Mater.
195
,
645
(
2020
).
15.
J.
Huang
,
M.
Niu
,
X.
Su
, and
K.
Xu
,
J. Phys. D: Appl. Phys.
53
,
065105
(
2019
).
16.
I.
Belabbas
,
I.
Vasileiadis
,
J.
Moneta
,
J.
Smalc-Koziorowska
, and
G.
Dimitrakopulos
,
J. Appl. Phys.
126
,
165702
(
2019
).
17.
E. T.
Hughes
,
R. D.
Shah
, and
K.
Mukherjee
,
J. Appl. Phys.
125
,
165702
(
2019
).
18.
Y.
Ishikawa
,
M.
Sudo
,
Y.-Z.
Yao
,
Y.
Sugawara
, and
M.
Kato
,
J. Appl. Phys.
123
,
225101
(
2018
).
19.
G.
Alymov
,
V.
Rumyantsev
,
S.
Morozov
,
V.
Gavrilenko
,
V.
Aleshkin
, and
D.
Svintsov
,
ACS Photonics
7
,
98
(
2020
).
20.
K. E.
Kudryavtsev
,
V. V.
Rumyantsev
,
V. V.
Utochkin
,
M. A.
Fadeev
,
V. Y.
Aleshkin
,
A. A.
Dubinov
,
M. S.
Zholudev
,
N. N.
Mikhailov
,
S. A.
Dvoretskii
,
V. G.
Remesnik
,
F.
Teppe
,
V. I.
Gavrilenko
, and
S. V.
Morozov
,
J. Appl. Phys.
130
,
214302
(
2021
).
21.
K. E.
Kudryavtsev
,
V. V.
Rumyantsev
,
V. V.
Utochkin
,
A. A.
Dubinov
,
V. Y.
Aleshkin
,
M. S.
Zholudev
,
N. N.
Mikhailov
,
S. A.
Dvoretskii
,
V. G.
Remesnik
,
V. I.
Gavrilenko
, and
S. V.
Morozov
,
J. Appl. Phys.
133
,
074301
(
2023
).
22.
J.
Wang
,
Y.
Xing
,
F.
Wan
,
C.
Fu
,
C.-H.
Xu
,
F.-X.
Liang
, and
L.-B.
Luo
,
J. Mater. Chem. C
10
,
12929
(
2022
).
23.
Y.
Wu
,
Y.
Liu
,
Y.
Liu
,
S.
Zhao
,
F.
Guo
,
S.
Li
,
W.
Yu
,
G.
Liu
,
J.
Hao
, and
L.
Hao
,
J. Mater. Chem. C
10
,
11187
(
2022
).
24.
M.
Zghaibeh
,
P. C.
Okonkwo
,
W.
Emori
,
T.
Ahmed
,
A. M. A.
Mohamed
,
M.
Aliyu
, and
G. J.
Ogunleye
,
Int. J. Green Energy
20
,
555
(
2022
).
25.
C.
Li
,
J.
Poplawsky
,
Y.
Wu
,
A. R.
Lupini
,
A.
Mouti
,
D. N.
Leonard
,
N.
Paudel
,
K.
Jones
,
W.
Yin
,
M.
Al-Jassim
,
Y.
Yan
, and
S. J.
Pennycook
,
Ultramicroscopy
134
,
113
(
2013
).
26.
V.
Krivobok
,
S.
Chentsov
,
S.
Nikolaev
,
M.
Chernopitssky
,
E.
Onishchenko
,
A.
Pruchkina
,
V.
Martovitskiy
,
V.
Bagaev
,
D.
Ikusov
,
D.
Marin
,
N.
Mikhailov
, and
M.
Yakushev
,
Appl. Phys. Lett.
115
,
232102
(
2019
).
27.
S.
Chentsov
,
V.
Krivobok
,
S.
Nikolaev
,
D.
Aminev
,
E.
Onishchenko
, and
A.
Klokov
,
Bull. Lebedev Phys. Inst.
49
,
99
(
2022
).
28.
V.
Varavin
,
D.
Marin
,
D.
Shefer
, and
M.
Yakushev
,
Infrared Phys. Technol.
94
,
11
(
2018
).
29.
K.
Mynbaev
,
N.
Bazhenov
,
S.
Dvoretsky
,
N.
Mikhailov
,
V.
Varavin
,
D.
Marin
, and
M.
Yakushev
,
J. Electron. Mater.
47
,
4731
(
2018
).
30.
S.
Hildebrandt
,
H.
Uniewski
,
J.
Schreiber
, and
H.
Leipner
,
J. Phys. III France
7
,
1505
(
1997
).
31.
K. H.
Kim
,
J. H.
Choi
,
A. E.
Bolotnikov
,
G. S.
Camarda
,
A.
Hossain
,
G.
Yang
,
Y.
Cui
, and
R. B.
James
,
J. Korean Phys. Soc.
62
,
623
(
2013
).
32.
S.
Zhang
,
J.
Zhang
,
X.
Qiu
,
Y.
Wu
, and
P.
Chen
,
J. Cryst. Growth
546
,
125756
(
2020
).
33.
E.
Molva
,
J. L.
Pautrat
,
K.
Saminadayar
,
G.
Milchberg
, and
N.
Magnea
,
Phys. Rev. B
30
,
3344
(
1984
).
34.
V.
Krivobok
,
S.
Nikolaev
,
S.
Chentsov
,
E.
Onishchenko
,
A.
Pruchkina
,
V.
Bagaev
,
A.
Silina
, and
N.
Smirnova
,
J. Lumin.
200
,
240
(
2018
).
35.
M. M.
Taheri
,
T. M.
Truong
,
S.
Li
,
W. N.
Shafarman
,
B. E.
McCandless
, and
J. B.
Baxter
,
J. Appl. Phys.
130
,
163104
(
2021
).
36.
M. S.
Leite
,
M.
Abashin
,
H. J.
Lezec
,
A.
Gianfrancesco
,
A.
Talin
, and
N. B.
Zhitenev
,
ACS Nano
8
,
11883
(
2014
).
37.
A.
Cola
,
I.
Farella
,
M.
Anni
, and
M. C.
Martucci
,
IEEE Trans. Nucl. Sci.
59
,
1569
(
2012
).
38.
V. E.
Gusev
and
A. A.
Karabutov
,
Laser Optoacoustics
(
American Institute of Physics
,
New York
,
1993
).
39.
K.
Maeda
and
S.
Takeuchi
, “Dislocations in solids,” in Enhancement of Dislocation Mobility in Semiconducting Crystals by Electronic Excitation (Elsevier, New York, 1996), Chap. 54, pp. 445–500.
40.
H.
Hirakata
,
S.
Homma
,
H.
Noda
,
S.
Sakaguchi
, and
T.
Shimada
,
J. Appl. Phys.
133
,
035101
(
2023
).
41.
C.
Li
,
Y.
Wu
,
J.
Poplawsky
,
T.
Pennycook
,
N.
Paudel
,
W.
Yin
,
S.
Haigh
,
M.
Oxley
,
A.
Lupini
,
M.
Al-Jassim
,
S.
Pennycook
, and
Y.
Yan
,
Phys. Rev. Lett.
112
,
156103
(
2014
).
42.
X.
Zhou
,
D. K.
Ward
,
B. M.
Wong
,
F. P.
Doty
, and
J. A.
Zimmerman
,
J. Phys. Chem. C
116
,
17563
(
2012
).
43.
S.-H.
Wei
and
S. B.
Zhang
,
Phys. Rev. B
66
,
155211
(
2002
).
44.
V.
Negriy
and
Y. A.
Osipyan
,
Fiz. Tverd. Tela
24
,
344
(
1982
) (in Russian).
45.
“Landolt–Börnstein—Group III condensed matter,” in Cadmium Telluride (CdTe) Debye Temperature, Heat Capacity, Density, Melting Point, Hardness, edited by O. Madelung, U. Rössler, and M. Schulz (Springer, 1999), pp. 41B.
46.
D.
Veysset
,
S. E.
Kooi
,
R.
Haferssas
,
M.
Hassani-Gangaraj
,
M.
Islam
,
A.
Maznev
,
Y.
Chernukha
,
X.
Zhao
,
K.
Nakagawa
,
D.
Martynowych
,
X.
Zhang
,
A. M.
Lomonosov
,
C. A.
Schuh
,
R.
Radovitzky
,
T.
Pezeril
, and
K. A.
Nelson
,
Scr. Mater.
158
,
42
(
2019
).
47.
A. Y.
Klokov
,
V. S.
Krivobok
,
A. I.
Sharkov
, and
N. Y.
Frolov
,
Sensors
22
,
870
(
2022
).

Supplementary Material

You do not currently have access to this content.