The material dependence of phonon-polariton-based in-plane thermal conductance is investigated by examining systems composed of air and several wurtzite and zinc-blende crystals. Phonon-polariton-based thermal conductance varies by over an order of magnitude ( 0.5 60 nW/K), which is similar to the variation observed in the materials corresponding to bulk thermal conductivity. Regardless of the material, phonon-polaritons exhibit similar thermal conductance to that of phonons when layers become ultrathin ( 10 nm), suggesting the generality of the effect at these length-scales. A figure of merit is proposed to explain the large variation of in-plane polariton thermal conductance that is composed entirely of easily predicted and measured optical phonon energies and lifetimes. Using this figure of merit, in-plane phonon-polariton thermal conductance enlarges with increases in (1) optical phonon energies, (2) splitting between transverse and longitudinal mode pairs, and (3) phonon lifetimes.

1.
G. E.
Moore
, “
Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff
,”
IEEE Solid-State Circuits Soc. Newsl.
11
,
33
35
(
2006
).
2.
M. S.
Lundstrom
and
M. A.
Alam
, “
Moore’s law: The journey ahead
,”
Science
378
,
722
723
(
2022
).
3.
C.
Landon
,
L.
Jiang
,
D.
Pantuso
,
I.
Meric
,
K.
Komeyli
,
J.
Hicks
, and
D.
Schroeder
, “Localized thermal effects in Gate-all-around devices,” in 2023 IEEE International Reliability Physics Symposium, IRPS (IEEE, 2023), pp. 1–5.
4.
IEA
, “Data centres and data transmission networks–analysis,” Tech. Rep. (2022).
5.
A.
Shehabi
,
S.
Smith
,
D.
Sartor
,
R.
Brown
,
M.
Herrlin
,
J.
Koomey
,
E.
Masanet
,
N.
Horner
,
I.
Azevedo
, and
W.
Lintner
, “United States data center energy usage report,” Tech. Rep. LBNL–1005775, 1372902 (2016).
6.
Q.
Zhang
,
Z.
Meng
,
X.
Hong
,
Y.
Zhan
,
J.
Liu
,
J.
Dong
,
T.
Bai
,
J.
Niu
, and
M. J.
Deen
, “
A survey on data center cooling systems: Technology, power consumption modeling and control strategy optimization
,”
J. Syst. Archit.
119
,
102253
(
2021
).
7.
G.
Murdoch
,
M.
O’Toole
,
G.
Marti
,
A.
Pokhrel
,
D.
Tsvetanova
,
S.
Decoster
,
S.
Kundu
,
Y.
Oniki
,
A.
Thiam
,
Q.
Le
,
O.
Varela Pedreira
,
A.
Lesniewska
,
G.
Martinez-Alanis
,
S.
Park
, and
Z.
Tokei
, “First demonstration of two metal level semi-damascene interconnects with fully self-aligned vias at 18MP,” in 2022 IEEE Symposium on VLSI Technology and Circuits (IEEE, 2022), pp. 1–2.
8.
K.
Esfarjani
,
G.
Chen
, and
H. T.
Stokes
, “
Heat transport in silicon from first-principles calculations
,”
Phys. Rev. B
84
,
085204
(
2011
).
9.
D.
Gall
, “
The search for the most conductive metal for narrow interconnect lines
,”
J. Appl. Phys.
127
,
050901
(
2020
).
10.
D.
Josell
,
S. H.
Brongersma
, and
Z.
Tokei
, “
Size-dependent resistivity in nanoscale interconnects
,”
Annu. Rev. Mater. Res.
39
,
231
254
(
2009
).
11.
D.-M.
Kim
,
S.
Choi
,
J.
Cho
,
M.
Lim
, and
B. J.
Lee
, “
Boosting thermal conductivity by surface plasmon polaritons propagating along a thin Ti film
,”
Phys. Rev. Lett.
130
,
176302
(
2023
).
12.
G.
Chen
,
Nanoscale Energy Transport and Conversion
(
Oxford University Press
,
New York
,
2005
).
13.
H.
Salihoglu
,
V.
Iyer
,
T.
Taniguchi
,
K.
Watanabe
,
P. D.
Ye
, and
X.
Xu
, “
Energy transport by radiation in hyperbolic material comparable to conduction
,”
Adv. Funct. Mater.
30
,
1905830
(
2020
).
14.
Y.
Wu
,
J.
Duan
,
W.
Ma
,
Q.
Ou
,
P.
Li
,
P.
Alonso-González
,
J. D.
Caldwell
, and
Q.
Bao
, “
Manipulating polaritons at the extreme scale in van der Waals materials
,”
Nat. Rev. Phys.
4
(9),
578
594
(
2022
).
15.
J.
Ordonez-Miranda
,
L.
Tranchant
,
B.
Kim
,
Y.
Chalopin
,
T.
Antoni
, and
S.
Volz
, “
Effects of anisotropy and size of polar nano thin films on their thermal conductivity due to surface phonon-polaritons
,”
Appl. Phys. Express
7
,
035201
(
2014
).
16.
J.
Ordonez-Miranda
,
L.
Tranchant
,
T.
Tokunaga
,
B.
Kim
,
B.
Palpant
,
Y.
Chalopin
,
T.
Antoni
, and
S.
Volz
, “
Anomalous thermal conductivity by surface phonon-polaritons of polar nano thin films due to their asymmetric surrounding media
,”
J. Appl. Phys.
113
,
084311
(
2013
).
17.
J.
Ordonez-Miranda
,
L.
Tranchant
,
K.
Joulain
,
Y.
Ezzahri
,
J.
Drevillon
, and
S.
Volz
, “
Thermal energy transport in a surface phonon-polariton crystal
,”
Phys. Rev. B
93
,
035428
(
2016
).
18.
L.
Tranchant
,
S.
Hamamura
,
J.
Ordonez-Miranda
,
T.
Yabuki
,
A.
Vega-Flick
,
F.
Cervantes-Alvarez
,
J. J.
Alvarado-Gil
,
S.
Volz
, and
K.
Miyazaki
, “
Two-dimensional phonon polariton heat transport
,”
Nano Lett.
19
,
6924
6930
(
2019
).
19.
E.
Baudin
,
C.
Voisin
, and
B.
Plaçais
, “
Hyperbolic phonon polariton electroluminescence as an electronic cooling pathway
,”
Adv. Funct. Mater.
30
,
1904783
(
2020
).
20.
X.
Wu
,
V.
Varshney
,
J.
Lee
,
Y.
Pang
,
A. K.
Roy
, and
T.
Luo
, “
How to characterize thermal transport capability of 2D materials fairly? – sheet thermal conductance and the choice of thickness
,”
Chem. Phys. Lett.
669
,
233
237
(
2017
).
21.
A.
Togo
,
L.
Chaput
, and
I.
Tanaka
, “
Distributions of phonon lifetimes in Brillouin zones
,”
Phys. Rev. B
91
,
094306
(
2015
).
22.
A.
Jarzembski
,
M.
Goldflam
,
A.
Siddiqui
,
I.
Ruiz
, and
T. E.
Beechem
, “
Enhancing graphene plasmonic device performance via its dielectric environment
,”
Phys. Rev. Appl.
14
,
034044
(
2020
).
23.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University Press
,
2012
).
24.
G.
Borstel
and
H. J.
Falge
, “
Surface phonon-polaritons at semi-infinite crystals
,”
Phys. Status Solidi B
83
,
11
45
(
1977
).
25.
D.-Z. A.
Chen
, “Energy transmission through and along thin films mediated by surface phonon-polaritons,” Doctor of Philosophy in Mechanical Engineering thesis (Massachusetts Institute of Technology, 2007).
26.
D.-Z. A.
Chen
,
A.
Narayanaswamy
, and
G.
Chen
, “
Surface phonon-polariton mediated thermal conductivity enhancement of amorphous thin films
,”
Phys. Rev. B
72
,
155435
(
2005
).
27.
A.
Huber
,
N.
Ocelic
,
D.
Kazantsev
, and
R.
Hillenbrand
, “
Near-field imaging of mid-infrared surface phonon polariton propagation
,”
Appl. Phys. Lett.
87
,
081103
(
2005
).
28.
S.
Lee
,
K.
Esfarjani
,
T.
Luo
,
J.
Zhou
,
Z.
Tian
, and
G.
Chen
, “
Resonant bonding leads to low lattice thermal conductivity
,”
Nat. Commun.
5
,
3525
(
2014
).
29.
T.
Luo
,
J.
Garg
,
J.
Shiomi
,
K.
Esfarjani
, and
G.
Chen
, “
Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations
,”
Europhys. Lett.
101
,
16001
(
2013
).
30.
T. E.
Beechem
,
A. E.
McDonald
,
E. J.
Fuller
,
A.
Alec Talin
,
C. M.
Rost
,
J.-P.
Maria
,
J. T.
Gaskins
,
P. E.
Hopkins
, and
A. A.
Allerman
, “
Size dictated thermal conductivity of GaN
,”
J. Appl. Phys.
120
,
095104
(
2016
).
31.
A. M.
Marconnet
,
M.
Asheghi
, and
K. E.
Goodson
, “
From the casimir limit to phononic crystals: 20 years of phonon transport studies using silicon-on-insulator technology
,”
J. Heat Transf.
135
,
061601
(
2013
).
32.
E.
Ziade
,
J.
Yang
,
G.
Brummer
,
D.
Nothern
,
T.
Moustakas
, and
A. J.
Schmidt
, “
Thickness dependent thermal conductivity of gallium nitride
,”
Appl. Phys. Lett.
110
,
031903
(
2017
).
33.
H. R.
Seyf
,
L.
Yates
,
T. L.
Bougher
,
S.
Graham
,
B. A.
Cola
,
T.
Detchprohm
,
M.-H.
Ji
,
J.
Kim
,
R.
Dupuis
,
W.
Lv
, and
A.
Henry
, “
Rethinking phonons: The issue of disorder
,”
npj Comput. Mater.
3
,
49
(
2017
).
34.
Y.
Song
,
C.
Perez
,
G.
Esteves
,
J. S.
Lundh
,
C. B.
Saltonstall
,
T. E.
Beechem
,
J. I.
Yang
,
K.
Ferri
,
J. E.
Brown
,
Z.
Tang
,
J.-P.
Maria
,
D. W.
Snyder
,
R. H. I.
Olsson
,
B. A.
Griffin
,
S. E.
Trolier-McKinstry
,
B. M.
Foley
, and
S.
Choi
, “
Thermal conductivity of aluminum scandium nitride for 5G mobile applications and beyond
,”
ACS Appl. Mater. Interfaces
13
,
19031
19041
(
2021
).
35.
R.
Cheaito
,
J. C.
Duda
,
T. E.
Beechem
,
K.
Hattar
,
J. F.
Ihlefeld
,
D. L.
Medlin
,
M. A.
Rodriguez
,
M. J.
Campion
,
E. S.
Piekos
, and
P. E.
Hopkins
, “
Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films
,”
Phys. Rev. Lett.
109
,
195901
(
2012
).
36.
L. J.
Slutsky
and
C. W.
Garland
, “
Elastic constants of indium antimonide from 4.2 K to 300 K
,”
Phys. Rev.
113
,
167
169
(
1959
).
37.
J. S.
Blakemore
, “
Semiconducting and other major properties of gallium arsenide
,”
J. Appl. Phys.
53
,
R123
R181
(
1982
).
38.
A. F.
Wright
, “
Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN
,”
J. Appl. Phys.
82
,
2833
(
1997
).
39.
T.
Beechem
and
S.
Graham
, “
Temperature and doping dependence of phonon lifetimes and decay pathways in GaN
,”
J. Appl. Phys.
103
,
093507
(
2008
).
40.
X.
Yang
,
T.
Feng
,
J. S.
Kang
,
Y.
Hu
,
J.
Li
, and
X.
Ruan
, “
Observation of strong higher-order lattice anharmonicity in Raman and infrared spectra
,”
Phys. Rev. B
101
,
161202
(
2020
).
41.
E.
Liarokapis
and
E.
Anastassakis
, “
Light scattering of InSb at high temperatures
,”
Phys. Rev. B
30
,
2270
2272
(
1984
).
42.
P.
Verma
,
S. C.
Abbi
, and
K. P.
Jain
, “
Raman-scattering probe of anharmonic effects in GaAs
,”
Phys. Rev. B
51
,
16660
16667
(
1995
).
43.
R. O.
Carlson
,
G. A.
Slack
, and
S. J.
Silverman
, “
Thermal conductivity of GaAs and GaAs 1 xP x laser semiconductors
,”
J. Appl. Phys.
36
,
505
507
(
1965
).
44.
Y.
Wu
,
J.
Ordonez-Miranda
,
S.
Gluchko
,
R.
Anufriev
,
D. D. S.
Meneses
,
L.
Del Campo
,
S.
Volz
, and
M.
Nomura
, “
Enhanced thermal conduction by surface phonon-polaritons
,”
Sci. Adv.
6
,
eabb4461
(
2020
).
45.
D.-Z.
Chen
and
G.
Chen
, “
Heat flow in thin films via surface phonon-polaritons
,”
Front. Heat Mass Transf.
1
,
023005
(
2010
).

Supplementary Material

You do not currently have access to this content.