The cellulose fibers that form washi are longer than those of regular paper made from wood pulp. Hence, the mechanical properties of washi can be higher than those of conventional paper. This study evaluated the magnetic, magnetostrictive, and tensile properties of negative magnetostrictive cobalt ferrite (CoFe2O4) particle dispersed handmade washi (washi−CoFe2O4). The CoFe2O4 additives magnetized the washi, which displayed negative magnetostriction with the fiber direction perpendicular to the magnetic field and in the parallel fiber direction. Concerning the mechanical properties, the washi−CoFe2O4 displayed an elongation of up to 77% after yielding.
REFERENCES
1.
M.
Mizumura
, T.
Kubo
, and T.
Moriki
, “Japanese paper: History, development and use in western paper conversation,” in Adapt & Evolve 2015: East Asian Materials and Techniques in Western Conservation. Proceedings from the International Conference of the Icon Book & Paper Group, London, United Kingdom (The Institute of Conservation, 2015), pp. 43–59.2.
B.
Prestowitz
and Y.
Katayama
, “Washi: Understanding Japanese paper as a material of culture and conservation,” The Book and Paper Group Annual 37 (2018).3.
H.
Yonenobu
, S.
Tsuchikawa
, and K.
Sato
, “Near-infrared spectroscopic analysis of aging degradation in antique washi paper using a deuterium exchange method
,” Vib. Spectrosc.
51
, 100
–104
(2009
). 4.
M.
Kyotani
, S.
Matsushita
, S.
Kimura
, and K.
Akagi
, “Efficient preparation of carbon papers by pyrolysis of iodine-treated Japanese paper
,” J. Anal. Appl. Pyrolysis
95
, 14
–20
(2012
). 5.
I.
Ohsawa
, J.
Takahashi
, K.
Uzawa
, M.
Kanai
, H.
Murayama
, and K.
Kageyama
, “Tensile properties of washi-paper reinforced polylactic acid (PLA) as a green composites
,” in 10th International SAMPE Symposium & Exhibition
, Tokyo, Japan
(The Society for the Advancement of Material and Process Engineering, 2007
).6.
R. W.
Mccallum
, K. W.
Dennis
, D. C.
Jiles
, J. E.
Snyder
, and Y. H.
Chen
, “Composite magnetostrictive materials for advanced automotive magnetomechanical sensors,” Modern Trends in Magnetostriction Study and application, NATO Science Series
(Springer
, Dordrecht
, 2001
), Vol. 5
.7.
M.
Rajendran
, R. C.
Pullar
, A. K.
Bhattacharya
, D.
Das
, S. N.
Chintalapudi
, and C. K.
Majumdar
, “Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size,” J. Magn. Magn. Mater.
232
, 71
(2001
). 8.
C.
Liu
, B.
Zou
, A. J.
Rondinone
, and Z. J.
Zhang
, “Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings,” J. Am. Chem. Soc.
122
, 6263
(2000
). 9.
Z. J.
Zhang
, Z. L.
Wang
, B. C.
Chakoumakos
, and J. S.
Yin
, “Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanocrystals,” J. Am. Chem. Soc.
120
, 1800
(1998
). 10.
H.
Kurita
, S. M.
binti Fakhruddin
, K. Y.
Inoue
, T.
Nakaki
, S.
Kuroda
, Z.
Wang
, W.
Araki
, H.
Shiku
, and F.
Narita
, “Energy-harvesting and mass sensor performances of magnetostrictive cobalt ferrite-spattered Fe–Co alloy plate
,” J. Alloys Compd.
951
, 169844
(2023
). 11.
T.
Ueno
, H.
Kurita
, and F.
Narita
, “Impact energy harvesting and storage through duct airflow using magnetostrictive clad films
,” AIP Adv.
12
, 115109
(2022
). 12.
D.
Neyama
, S. M. B.
Fakhruddin
, K. Y.
Inoue
, H.
Kurita
, S.
Osana
, N.
Miyamoto
, T.
Tayama
, D.
Chiba
, M.
Watanabe
, H.
Shiku
, and F.
Narita
, “Batteryless wireless magnetostrictive Fe30Co70/Ni clad plate for human coronavirus 229E detection
,” Sens. Actuators, A
349
, 114052
(2023
). 13.
H.
Kurita
, S. M. B.
Fakhruddin
, D.
Neyama
, K. Y.
Inoue
, T.
Tayama
, D.
Chiba
, M.
Watanabe
, H.
Shiku
, and F.
Narita
, “Detection of virus-like particles using magnetostrictive vibration energy harvesting
,” Sens. Actuators, A
345
, 113814
(2022
). 14.
T.
Keino
, L.
Rova
, A.
Gallet–Pandellé
, H.
Kurita
, and F.
Narita
, “Negative magnetostrictive paper formed by dispersing CoFe2O4 particles in cellulose nanofibrils
,” Sci. Rep.
13
, 6144
(2023
). 15.
P. D.
Thang
, G.
Rjinders
, and D. H. A.
Blank
, “Spinel cobalt ferrite by complexometric synthesis
,” J. Magn. Magn. Mater.
295
, 251
–256
(2005
). 16.
Z.
Wang
, K.
Mori
, K.
Nakajima
, and F.
Narita
, “Fabrication, modeling and characterization of magnetostrictive short fiber composites
,” Materials
13
(7
), 1494
(2020
). 17.
R. M.
Bozorth
, E. F.
Tilden
, and A. J.
Williams
, “Anisotropy and magnetostriction of some ferrites
,” Phys. Rev.
99
, 1788
–1798
(1955
). © 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.