The semiconducting behavior of two-dimensional (2D) metal nanostructures has recently attracted much interest for their possible applications in optoelectronics and others. In particular, tuning the bandgap of such nanostructures can open up a new avenue for fabricating functional nano-devices. In the present article, we report the synthesis of 2D metallic Zn nanosheets at room temperature using a ball mill, which is capable of producing large-scale materials in a single run. Initially, nanoplates were formed for ball milling the octahedral-shaped Zn nanoparticles for the time of milling of 6 h. Subsequent ball milling for another 6 h leads these nanoplates to nearly uniform nanosheets. The thickness of these 2D nanostructures was found to decrease with an increase in the time of milling. Visible photoluminescence (PL) emissions centered at ∼3, ∼2.9, and ∼2.75 eV were observed from all the Zn particles showing semiconductor behavior. The origin of such semiconductor behavior was explained based on the radiative transition of electrons from the sp band to the upper states of the 3d band. This argument was confirmed through the studies of photoelectron spectroscopy and the first principle calculations employing density functional theory (DFT). Furthermore, excitation-dependent PL studies indicated that the bandgap of the 2D Zn nanostructures decreased with the increase in the ball milling time. Therefore, a redshift in the bandgap was observed with the increase in the ball milling time. Such changes in the bandgap with the thickness of 2D Zn nanostructures were also verified from the studies of DFT. Thus, the present study demonstrated that the bandgap of 2D metallic Zn nanostructures could be effectively tuned by reducing the thickness.

1.
L.
Dykman
and
N.
Khlebtsov
,
Chem. Soc. Rev.
41
,
2256
2282
(
2012
).
2.
K.
Saha
,
S. S.
Agasti
,
C.
Kim
,
X.
Li
, and
V. M.
Rotello
,
Chem. Rev.
112
,
2739
2779
(
2012
).
3.
4.
Q.
Zhang
,
N.
Iwakuma
,
P.
Sharma
,
B. M.
Moudgil
,
C.
Wu
,
J.
McNeill
,
H.
Jiang
, and
S. R.
Grobmyer
,
Nanotechnology
20
,
395102
(
2009
).
5.
W.
Li
and
X.
Chen
,
Nanomedicine
10
,
299
320
(
2015
).
6.
B.
Chakraborty
,
R.
Pal
,
M.
Ali
,
L. M.
Singh
,
D. S.
Rahman
,
S. K.
Ghosh
, and
M.
Sengupta
,
Cell. Mol. Immunol.
13
,
191
205
(
2016
).
7.
S. S.
Chang
,
S. O.
Yoon
,
H. J.
Park
, and
A.
Sakai
,
Mater. Lett.
53
,
432
436
(
2002
).
8.
M. E.
Stora
and
R. E.
Hummel
,
J. Phys. Chem. Solids
63
,
1867
1872
(
2002
).
9.
R.
Das
,
S. S.
Nath
, and
R.
Bhattacharjee
,
J. Lumin.
131
,
2703
2706
(
2011
).
10.
J. H.
Lin
,
Y. J.
Huang
,
Y. P.
Su
,
C. A.
Liu
,
R. S.
Devan
,
C. H.
Ho
,
Y. P.
Wang
,
H. W.
Lee
,
C. M.
Chang
,
Y.
Liou
, and
Y. R.
Ma
,
RSC Adv.
2
,
2123
2127
(
2012
).
11.
N. T.
Mai
,
T. T.
Thuy
,
D. M.
Mott
, and
S.
Maenosono
,
CrystEngComm
15
,
6606
6610
(
2013
).
12.
H. S.
Chou
,
K. D.
Yang
,
S. H.
Xiao
,
R. A.
Patil
,
C. C.
Lai
,
W. C. V.
Yeh
,
C. H.
Ho
,
Y.
Liou
, and
Y. R.
Ma
,
Nanoscale
11
,
13385
(
2019
).
13.
J. H.
Lin
,
R. A.
Patil
,
R. S.
Devan
,
Z. A.
Liu
,
Y. P.
Wang
,
C. H.
Ho
,
Y.
Liou
, and
Y. R.
Ma
,
Sci. Rep.
4
,
6967
(
2014
).
14.
S.
Tabasso
,
D.
Carnaroglio
,
E.
Calcio Gaudino
, and
G.
Cravotto
,
Green Chem.
17
,
684
693
(
2015
).
15.
F. T.
Seta
,
X.
An
,
L.
Liu
,
H.
Zhang
,
J.
Yang
,
W.
Zhanga
,
S.
Nie
,
S.
Yao
,
H.
Cao
,
Q.
Xu
,
Y.
Bu
, and
H.
Liu
,
Carbohydr. Polym.
234
,
115942
(
2020
).
16.
L.
Li
,
Y. C. A.
Tsang
,
D.
Xiao
,
G.
Zhu
,
C.
Zhi
, and
Q.
Chen
,
Nat. Comm.
13
,
2870
(
2022
).
17.
J.
Zhou
,
M.
Xie
,
F.
Wu
,
Y.
Mei
,
Y.
Hao
,
L.
Li
, and
R.
Chen
,
Adv. Mater.
34
,
2106897
(
2022
).
18.
P. T.
Chen
,
T.
Sangeetha
,
T. W.
Hsu
,
C. J.
Yang
,
T. Y.
Yung
,
W. M.
Yan
, and
K. D.
Huang
,
Chem. Phys. Lett.
728
,
160
166
(
2019
).
19.
K.
Liu
,
J.
Wang
,
M.
Shi
,
J.
Yan
, and
Q.
Jiang
,
Adv. Energy Mater.
9
,
1900276
(
2019
).
20.
C.
Wu
,
H.
Tan
,
W.
Huang
,
W.
Li
,
K.
Ngoc Dinh
,
C.
Yan
,
W.
Wei
,
L.
Chen
, and
Q.
Yan
,
Adv. Funct. Mater.
30
,
2003187
(
2020
).
21.
G. H.
An
,
J.
Hong
,
S.
Pak
,
Y.
Cho
,
S.
Lee
,
B.
Hou
, and
S.
Cha
,
Adv. Energy Mater.
10(3),
1902981
(
2019
).
22.
P.
Dash
,
T.
Dash
,
T. K.
Rout
,
A. K.
Sahu
,
S. K.
Biswal
, and
B. K.
Mishra
,
RSC Adv.
6
,
12657
(
2016
).
23.
A. E. D.
Mahmoud
,
A.
Stolle
, and
M.
Stelter
,
ACS Sustainable Chem. Eng.
6
,
6358
6369
(
2018
).
24.
M.
Cantarella
,
G.
Gorrasi
,
A. D.
Mauro
,
M.
Scuderi
,
G.
Nicotra
,
R.
Fiorenza
,
S.
Scirè
,
M. E.
Scalisi
,
M. V.
Brundo
,
V.
Privitera
, and
G.
Impellizzeri
,
Sci. Rep.
9
,
974
(
2019
).
25.
F.
Zhou
,
S.
Li
,
L.
Ouyang
,
J.
Liu
,
J.
Liu
,
Z.
Huang
, and
M.
Zhu
,
Chem. Eng. J.
444
,
136593
(
2022
).
26.
W.
Ashraf
,
A.
Khan
,
S.
Bansal
, and
M.
Khanuja
,
Phys. E: Low-Dimens. Syst. Nanostruct.
140
,
115152
(
2022
).
27.
M.
Dogrusoz
and
R.
Demir-Cakan
,
Int. J. Energy Res.
44
,
10809
10820
(
2020
).
28.
Y.
Zhou
,
L.
Xu
,
M.
Liu
,
Z.
Qi
,
W.
Wang
,
J.
Zhu
,
S.
Chen
,
K.
Yu
,
Y.
Su
,
B.
Ding
,
L.
Qiu
, and
H. M.
Cheng
,
ACS Nano
16
,
10179
10187
(
2022
).
29.
M. Y.
Wei
,
J.
Lian
,
Y.
Zhang
,
C. L.
Wang
,
Y.
Wang
, and
Z.
Xu
,
npj 2D Mater. Appl.
6
,
1
(
2022
).
30.
X. L.
Li
,
W. P.
Han
,
J. B.
Wu
,
X. F.
Qiao
,
J.
Zhang
, and
P. H.
Tan
,
Adv. Funct. Mater.
27
,
1604468
(
2017
).
31.
Y. M.
Jahn
and
A.
Ya’akobovitz
,
Nanoscale
13
,
18458
(
2021
).
32.
Y.
Tong
,
M.
Shao
,
G.
Qian
, and
Y.
Ni
,
Nanotechnology
16
,
2512
2515
(
2005
).
33.
T.
Zhou
,
N.
Zhang
,
C.
Wu
, and
Y.
Xie
,
Energy Environ. Sci.
13
,
1132
(
2020
).
34.
R. S.
Devan
,
J. H.
Lin
,
Y. J.
Huang
,
C. C.
Yang
,
S. Y.
Wu
,
Y.
Liou
, and
Y. R.
Ma
,
Nanoscale
3
,
4339
(
2011
).
35.
S.
Pramanik
,
S.
Mukherjee
,
S.
Dey
,
S.
Mukherjee
,
S.
Das
,
T.
Ghosh
,
P.
Ghosh
,
R.
Nath
, and
P. K.
Kuiri
,
J. Lumin.
251
,
119156
(
2022
).
36.
K.
Užarević
,
I.
Halasz
, and
T.
Friščić
,
J. Phys. Chem. Lett.
6
,
4129
4140
(
2015
).
37.
S. V.
Pedersen
,
F.
Muramutsa
,
J. D.
Wood
,
C.
Husko
,
D.
Estrada
, and
B. J.
Jaques
,
npj 2D Mater. Appl.
4
,
36
(
2020
).
38.
H.
Mio
,
J.
Kano
, and
F.
Saito
,
Chem. Eng. Sci.
59
,
5909
5916
(
2004
).
39.
G.
Gorrasi
and
A.
Sorrentino
,
Green Chem.
17
,
2610
2625
(
2015
).
40.
D.
Shin
,
B.
Madavali
,
D. S.
Kim
,
J. Y.
Lee
,
M. C.
Kang
,
C. W.
Yang
,
C.
Suryanarayana
, and
S. J.
Hong
,
Mater. Res. Express
7
,
096101
(
2020
).
41.
P. L.
Guzzo
,
F. B. M.
de Barros
,
B. R.
Soares
, and
J. B.
Santos
,
Powder Technol.
368
,
149
159
(
2020
).
42.
S.
Das
,
S.
Pramanik
,
M.
Hossain
,
S.
Mukherjee
,
C.
Rajak
,
P.
Pal
, and
P. K.
Kuiri
,
Indian J. Phys.
, (published online
2023
).
43.
S.
Pramanik
,
S.
Mondal
,
A. C.
Mandal
,
S.
Mukherjee
,
S.
Das
,
T.
Ghosh
,
R.
Nath
,
M.
Ghosh
, and
P. K.
Kuiri
,
J. Alloys Compd.
849
,
156684
(
2020
).
44.
J.
Zhan
,
H.
Dong
,
S.
Sun
,
X.
Ren
,
J.
Liu
,
Z.
Chen
,
C.
Lienau
, and
L.
Zhang
,
Adv. Opt. Mater.
4
,
126
(
2016
).
45.
T.
Wang
,
J.
Sun
,
Y.
Hua
,
B. N. V.
Krishna
,
Q.
Xi
,
W.
Ai
, and
J. S.
Yu
,
Energy Storage Mater.
53
,
273
304
(
2022
).
46.
S.
Li
,
J.
Fu
,
G.
Miao
,
S.
Wang
,
W.
Zhao
,
Z.
Wu
,
Y.
Zhang
, and
X.
Yang
,
Adv. Mater.
33
,
2008424
(
2021
).
47.
P. K.
Kuiri
and
D. P.
Mahapatra
,
J. Phys. D: Appl. Phys.
43
,
395404
(
2010
).
48.
J. K.
Majhi
,
A. C.
Mandal
, and
P. K.
Kuiri
,
J. Comput. Theor. Nanosci.
12
,
2997
3005
(
2015
).
49.
K. S.
Babu
,
A. R.
Reddy
,
C.
Sujatha
, and
K. V.
Reddy
,
Ceram. Int.
39
,
3055
3064
(
2013
).
50.
E.
Korin
,
N.
Froumin
, and
S.
Cohen
,
ACS Biomater. Sci. Eng.
3
,
882
889
(
2017
).
51.
S.
Minami
,
F.
Ishii
,
Y. P.
Mizuta
, and
M.
Saito
,
Appl. Phys. Lett.
113
,
032403
(
2018
).

Supplementary Material

You do not currently have access to this content.