The behavior of four algebraic closure models for anomalous electron transport is investigated using a fluid Hall thruster code. The models, which were selected because they have been previously described in the literature, are calibrated against a baseline experimental condition of a 9-kW-class magnetically shielded Hall thruster operating at 300 V and 15 A on xenon propellant. The extensibility of the models is then assessed by using this calibrated model to simulate three additional operating conditions—300 V and 30 A, 600 V and 15 A, and 300 V and 15 A operating on krypton propellant. The quality of the model prediction is quantified by comparing the model outputs to experimental measurements of discharge current, thrust, and ion velocity. It is found that while none of the models can predict the ion acceleration characteristics accurately, some compare favorably in terms of the scaling of thrust and discharge current across operating conditions. The limitations of the models are attributed to the coupling between the functional scaling of the closure models with respect to the local plasma properties and the fluid model. The role of the electron energy balance in this coupling is also highlighted. These results are discussed in the context of motivating improved closure models of the anomalous electron transport in Hall thrusters.

1.
J.
Jackson
,
M.
Allen
,
R.
Myers
,
E.
Soendker
,
B.
Welander
,
A.
Tolentino
,
S.
Hablitzel
,
C.
Yeatts
,
C.
Sheehan
,
J.
Cardin
,
J. S.
Snyder
,
R. R.
Hofer
,
T.
Tofil
, and
D.
Herman
, “13 kW advanced electric propulsion flight system development and qualification,” in The 36th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2019), p. 18.
2.
J. S.
Snyder
,
D. M.
Goebel
,
V.
Chaplin
,
A. L.
Ortega
,
I. G.
Mikellides
,
F.
Aghazadeh
,
I.
Johnson
,
T.
Kerl
, and
G.
Lenguito
, “Electric propulsion for the Psyche mission,” in 36th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2019).
3.
J. S.
Snyder
,
V.
Chaplin
,
D. M.
Goebel
,
R. R.
Hofer
,
A. L.
Ortega
,
I. G.
Mikellides
,
T.
Kerl
,
G.
Lenguito
,
F.
Aghazadeh
, and
I.
Johnson
, “Electric propulsion for the Psyche mission: Development activities and status,” in AIAA Propulsion and Energy 2020 Forum (AIAA, 2020), pp. 1–15.
4.
J. P.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
5.
I. G.
Mikellides
,
I.
Katz
,
R. R.
Hofer
, and
D. M.
Goebel
, “
Magnetic shielding of a laboratory Hall thruster. I. Theory and validation
,”
J. Appl. Phys.
115
,
043303
(
2014
).
6.
J.
Brophy
,
J.
Polk
, and
J.
Dankanich
, “Lifetime qualification standard for electric thrusters,” in 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (AIAA, 2009).
7.
J.
Cavalier
,
N.
Lemoine
,
G.
Bonhomme
,
S.
Tsikata
,
C.
Honoré
, and
D.
Grésillon
, “
Hall thruster plasma fluctuations identified as the e-b electron drift instability: Modeling and fitting on experimental data
,”
Phys. Plasmas
20
,
082107
(
2013
).
8.
B.
Vincent
,
S.
Tsikata
,
S.
Mazouffre
,
T.
Minea
, and
J.
Fils
, “
A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies
,”
Plasma Sources Sci. Technol.
27
,
055002
(
2018
).
9.
D. L.
Brown
,
C. W.
Larson
,
B. E.
Beal
, and
A. D.
Gallimore
, “
Methodology and historical perspective of a Hall thruster efficiency analysis
,”
J. Propul. Power
25
,
31
(
2020
).
10.
W.
Villafana
,
B.
Cuenot
, and
O.
Vermorel
, “
3D particle-in-cell study of the electron drift instability in a Hall thruster using unstructured grids
,”
Phys. Plasmas
30
,
033503
(
2023
).
11.
M.
Reza
,
F.
Faraji
,
A.
Knoll
,
A.
Piragino
,
T.
Andreussi
, and
T.
Misuri
, “
Reduced-order particle-in-cell simulations of a high-power magnetically shielded Hall thruster
,”
Plasma Sources Sci. Technol.
32
,
065016
(
2023
).
12.
I. G.
Mikellides
and
I.
Katz
, “
Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh
,”
Phys. Rev. E
86
,
046703
(
2012
).
13.
R. R.
Hofer
,
H.
Kamhawi
,
D. A.
Herman
,
J. E.
Polk
,
J. S.
Snyder
,
I. G.
Mikellides
,
W.
Huang
,
J. L.
Myers
,
J. T.
Yim
,
G. J.
Williams
,
A. L.
Ortega
,
B. A.
Jorns
,
M. J.
Sekerak
,
C.
Griffith
,
R.
Shastry
,
T. W.
Haag
,
T.
Verhey
,
B.
Gilliam
,
I.
Katz
,
D. M.
Goebel
,
J. R.
Anderson
,
J. H.
Gilland
, and
L.
Clayman
, “Development approach and status of the 12.5 kW HERMeS Hall thruster for the solar electric propulsion technology demonstration mission,” in 34th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2015).
14.
I. G.
Mikellides
and
A. L.
Ortega
, “
2D (r–z) numerical simulations of the plasma and channel erosion in a 100 kW class nested Hall thruster
,”
Plasma Sources Sci. Technol.
27
,
075001
(
2018
).
15.
C. M.
Lam
,
E.
Fernandez
, and
M. A.
Cappelli
, “
A 2D hybrid Hall thruster simulation that resolves the E × B electron drift direction
,”
IEEE Trans. Plasma Sci.
43
,
86
94
(
2015
).
16.
R.
Kawashima
and
K.
Komurasaki
, “
Two-dimensional hybrid model of gradient drift instability and enhanced electron transport in a Hall thruster
,”
Phys. Plasmas
28
,
063502
(
2021
).
17.
M. K.
Scharfe
,
C. A.
Thomas
,
D. B.
Scharfe
,
N.
Gascon
,
M. A.
Cappelli
, and
E.
Fernandez
, “
Shear-based model for electron transport in hybrid Hall thruster simulations
,”
IEEE Trans. Plasma Sci.
36
,
2058
2068
(
2008
).
18.
M. A.
Cappelli
,
C. V.
Young
,
E.
Cha
, and
E.
Fernandez
, “
A zero-equation turbulence model for two-dimensional hybrid Hall thruster simulations
,”
Phys. Plasmas
22
,
114505
(
2015
).
19.
T.
Lafleur
,
S. D.
Baalrud
, and
P.
Chabert
, “
Theory for the anomalous electron transport in Hall effect thrusters. I. Insights from particle-in-cell simulations
,”
Phys. Plasmas
23
,
053502
(
2016
).
20.
B.
Jorns
, “
Predictive, data-driven model for the anomalous electron collision frequency in a Hall effect thruster
,”
Plasma Sources Sci. Technol.
27
,
104007
(
2018
).
21.
G.
Alfonsi
, “
Reynolds-averaged Navier–Stokes equations for turbulence modeling
,”
Appl. Mech. Rev.
62
,
040802
(
2009
).
22.
I.
Katz
,
A. L.
Ortega
,
B. A.
Jorns
, and
I. G.
Mikellides
, Growth and saturation of ion acoustic waves in Hall thrusters,” in 2016 AIAA Propulsion and Energy Forum (AIAA, 2016).
23.
B. A.
Jorns
, “Two equation closure model for plasma turbulence in a Hall effect thruster,” in 36th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2019), pp. 1–12.
24.
M. K.
Scharfe
,
N.
Gascon
,
M. A.
Cappelli
, and
E.
Fernandez
, “
Comparison of hybrid Hall thruster model to experimental measurements
,”
Phys. Plasmas
13
,
083505
(
2006
).
25.
J. W.
Koo
and
I. D.
Boyd
, “
Modeling of anomalous electron mobility in Hall thrusters
,”
Phys. Plasmas
13
,
3541
(
2006
).
26.
I. G.
Mikellides
and
A. L.
Ortega
, “
Challenges in the development and verification of first-principles models in Hall-effect thruster simulations that are based on anomalous resistivity and generalized Ohm’s law
,”
Plasma Sources Sci. Technol.
28
,
014003
(
2019
).
27.
R.
Hofer
,
I.
Mikellides
,
I.
Katz
, and
D.
Goebel
, “Wall sheath and electron mobility modeling in hybrid-PIC Hall thruster simulations,” in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (AIAA, 2007), https://arc.aiaa.org/doi/pdf/10.2514/6.2007-5267.
28.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
Jet Propulsion Laboratory
,
2008
).
29.
R.
Hofer
,
I.
Katz
,
D.
Goebel
,
K.
Jameson
,
R.
Sullivan
,
L.
Johnson
, and
I.
Mikellides
, “Efficacy of electron mobility models in hybrid-PIC Hall thruster simulations,” in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (AIAA, 2012).
30.
E. T.
Dale
and
B. A.
Jorns
, “
Non-invasive time-resolved measurements of anomalous collision frequency in a Hall thruster
,”
Phys. Plasmas
26
,
013516
(
2019
).
31.
S.
Tsikata
,
N.
Lemoine
,
V.
Pisarev
, and
D. M.
Gŕsillon
, “
Dispersion relations of electron density fluctuations in a Hall thruster plasma, observed by collective light scattering
,”
Phys. Plasmas
16
,
33506
(
2009
).
32.
S.
Tsikata
,
A.
Héron
, and
C.
Honoré
, “
Hall thruster microturbulence under conditions of modified electron wall emission
,”
Phys. Plasmas
24
,
053519
(
2017
).
33.
Z. A.
Brown
and
B. A.
Jorns
, “
Spatial evolution of small wavelength fluctuations in a Hall thruster
,”
Phys. Plasmas
26
,
113504
(
2019
).
34.
Z. A.
Brown
and
B. A.
Jorns
, “
Growth and saturation of the electron drift instability in a crossed field plasma
,”
Phys. Rev. Lett.
130
,
115101
(
2023
).
35.
T. A.
Marks
and
B. A.
Jorns
, “
Challenges with the self-consistent implementation of closure models for anomalous electron transport in fluid simulations of Hall thrusters
,”
Plasma Sources Sci. Technol.
32
,
045016
(
2023
).
36.
R.
Chodura
,
G.
Bardotti
, and
F.
Engelmann
, “
Numerical investigation of the anomalous resistivity due to two-stream instability
,”
Plasma Phys.
13
,
1099
(
1971
).
37.
D.
Biskamp
and
R.
Chodura
, “
Computer simulation of anomalous DC resistivity
,”
Phys. Rev. Lett.
27
,
1553
1556
(
1971
).
38.
A. G.
Sgro
and
C. W.
Nielson
, “
Hybrid model studies of ion dynamics and magnetic field diffusion during pinch implosions
,”
Phys. Fluids
19
,
126
133
(
1976
).
39.
R. D.
Milroy
and
J. U.
Brackbill
, “
Numerical studies of a field-reversed theta-pinch plasma
,”
Phys. Fluids
25
,
775
783
(
1982
).
40.
M. E.
Kayama
, “
Resistivity in the dynamic current sheath of a field reversed configuration
,”
Phys. Plasmas
19
,
032511
(
2012
).
41.
J.
Simmonds
,
Y.
Raitses
, and
A.
Smolyakov
, “
A theoretical thrust density limit for Hall thrusters
,”
J. Electr. Propul.
2
,
12
(
2023
).
42.
R. R.
Hofer
,
S. E.
Cusson
,
R. B.
Lobbia
, and
A. D.
Gallimore
, “The H9 magnetically shielded Hall thruster” in 35th International Electric Propulsion Conference (2017).
43.
S. E.
Cusson
,
R. R.
Hofer
,
R. B.
Lobbia
,
B. A.
Jorns
, and
A. D.
Gallimore
, “Performance of the H9 magnetically shielded Hall thrusters,” in 35th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2017).
44.
L. L.
Su
and
B. A.
Jorns
, “
Performance comparison of a 9-kW magnetically shielded Hall thruster operating on xenon and krypton
,”
J. Appl. Phys.
130
,
163306
(
2021
).
45.
L. L.
Su
and
B.
Jorns
, “Performance at high current densities of a magnetically-shielded Hall thruster,” in AIAA Propulsion and Energy 2021 Forum (AIAA, 2021).
46.
J. M.
Fife
, “Hybrid-PIC modeling and electrostatic probe survey of Hall thrusters,” Ph.D. thesis (Massachusetts Institute of Technology, 1998).
47.
J.
Perales-Díaz
,
A.
Domínguez-Vázquez
,
P.
Fajardo
,
E.
Ahedo
,
F.
Faraji
,
M.
Reza
, and
T.
Andreussi
, “
Hybrid plasma simulations of a magnetically shielded Hall thruster
,”
J. Appl. Phys.
131
,
103302
(
2022
).
48.
M. P.
Georgin
,
B. A.
Jorns
, and
A. D.
Gallimore
, “
Transient non-classical transport in the hollow cathode plume I: Measurements of time-varying electron collision frequency
,”
Plasma Sources Sci. Technol.
29
,
105010
(
2020
).
49.
T.
Marks
,
P.
Schedler
, and
B.
Jorns
, “
Hallthruster.jl: A julia package for 1D Hall thruster discharge simulation
,”
J. Open Source Software
8
,
4672
(
2023
).
50.
T. A.
Marks
and
B. A.
Jorns
, “Modeling anomalous electron transport in Hall thrusters using surrogate methods,” in 37th International Electric Propulsion Conference (Electric Rocket Propulsion Society, 2022).
51.
K.
Hara
, “
Non-oscillatory quasineutral fluid model of cross-field discharge plasmas
,”
Phys. Plasmas
25
,
123508
(
2018
).
52.
E.
Dale
, “Investigation of the Hall thruster breathing mode,” Ph. D thesis, University of Michigan (2019).
53.
A. L.
Ortega
,
B.
Jorns
,
I. G.
Mikellides
, and
R. R.
Hofer
, “Numerical simulations of the XR-5 Hall thruster for life assessment at different operating conditions,” in 51st AIAA/SAE/ASEE Joint Propulsion Conference (AIAA, 2015), https://arc.aiaa.org/doi/pdf/10.2514/6.2015-4008.
54.
S. I.
Braginskii
, “
Transport processes in a plasma
,”
RvPP
1
,
205
(
1965
); available at https://static.ias.edu/pitp/2016/sites/pitp/files/braginskii_1965-1.pdf
55.
Y.
Yamashita
,
R.
Lau
, and
K.
Hara
, “
Inertial and anisotropic pressure effects on cross-field electron transport in low-temperature magnetized plasmas
,”
J. Phys. D: Appl. Phys.
56
,
384003
(
2023
).
You do not currently have access to this content.