This study aims to contribute to the development of theoretical and experimental tools for characterizing the transport properties of perovskite semiconductors. In the context of existing transport characterization methods for perovskites, there is a need for techniques that can accurately assess the critical transport parameters, such as diffusion lengths, given the specific challenges posed, such as their inherent instabilities. The novel methodology employed involves the development of a theoretical model to describe the running fringes-induced photo-electromotive force (RF photo-EMF) effect in bipolar photoconductors with a rather general type of photoconductivity relaxation behaviors for both carriers. This model is founded on the theory of photoinduced space charge grating formation in semiconductors. Subsequently, RF photo-EMF experiments were conducted on methylammonium lead iodide (CH 3NH 3PbI 3 or MAPI) polycrystalline films of varying grain sizes. By utilizing the RF photo-EMF technique, we successfully elucidated crucial transport and recombination characteristics, notably the ambipolar diffusion length and relaxation times of the charge carriers. Significantly, the developed theoretical model exhibited a remarkable agreement with the experimental results, highlighting its ability in explaining and predicting the behavior of charge carriers in perovskite semiconductors. The results of this study make a substantial contribution to the field of perovskite semiconductors by offering a novel theoretical and experimental approach to characterization of perovskites’ transport properties.

1.
T.
Wu
,
Z.
Qin
,
Y.
Wang
,
Y.
Wu
,
W.
Chen
,
S.
Zhang
,
M.
Cai
,
S.
Dai
,
J.
Zhang
,
J.
Liu
,
Z.
Zhou
,
X.
Liu
,
H.
Segawa
,
H.
Tan
,
Q.
Tang
,
J.
Fang
,
Y.
Li
,
L.
Ding
,
Z.
Ning
,
Y.
Qi
,
Y.
Zhang
, and
L.
Han
,
Nano-Micro Lett.
13
,
152
(
2021
).
2.
P.
Basumatary
and
P.
Agarwal
,
Mater. Res. Bull.
149
,
111700
(
2022
).
3.
National Renewable Energy Laboratory, NREL Solar Cell Efficiency Chart (2023), Best Research Cell Efficiency Chart; available at https://www.nrel.gov/pv/cell-efficiency.html (Accessed 2023 April 9).
4.
H.
Zai
,
Y.
Ma
,
Q.
Chen
, and
H.
Zhou
,
J. Energy Chem.
63
,
528
(
2021
), in Celebration of the 100th anniversary of Chemisry at Nankai University.
5.
Y.
Zhao
,
W.
Zhou
,
Z.
Han
,
D.
Yu
, and
Q.
Zhao
,
Phys. Chem. Chem. Phys.
23
,
94
(
2021
).
6.
N.
Glück
and
T.
Bein
,
Energy Environ. Sci.
13
,
4691
(
2020
).
7.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Menelaou
,
M. J. P.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
,
Science
342
,
341
(
2013
).
8.
T. M.
Brenner
,
D. A.
Egger
,
L.
Kronik
,
G.
Hodes
, and
D.
Cahen
,
Nat. Rev. Mater.
1
,
1
(
2016
).
9.
G. W. P.
Adhyaksa
,
L. W.
Veldhuizen
,
Y.
Kuang
,
S.
Brittman
,
R. E. I.
Schropp
, and
E. C.
Garnett
,
Chem. Mater.
28
,
5259
(
2016
).
10.
D.
Shi
,
V.
Adinolfi
,
R.
Comin
,
M.
Yuan
,
E.
Alarousu
,
A.
Buin
,
Y.
Chen
,
S.
Hoogland
,
A.
Rothenberger
,
K.
Katsiev
,
Y.
Losovyj
,
X.
Zhang
,
P. A.
Dowben
,
O. F.
Mohammed
,
E. H.
Sargent
, and
O. M.
Bakr
,
Science
347
,
519
(
2015
).
11.
J. I.
Khan
,
F. H.
Isikgor
,
E.
Ugur
,
W.
Raja
,
G. T.
Harrison
,
E.
Yengel
,
T. D.
Anthopoulos
,
S. D.
Wolf
, and
F.
Laquai
,
ACS Energy Lett.
6
,
4155
(
2021
).
12.
T.
Kirchartz
,
J. A.
Márquez
,
M.
Stolterfoht
, and
T.
Unold
,
Adv. Energy Mater.
10
,
1904134
(
2020
).
13.
C.
Liang
,
D.
Zhao
,
P.
Li
,
B.
Wu
,
H.
Gu
,
J.
Zhang
,
T. W.
Goh
,
S.
Chen
,
Y.
Chen
,
Z.
Sha
,
G.
Shao
,
T. C.
Sum
, and
G.
Xing
,
Nano Energy
59
,
721
(
2019
).
14.
L.-C.
Chen
,
C.-C.
Chen
,
J.-C.
Chen
, and
C.-G.
Wu
,
Sol. Energy
122
,
1047
(
2015
).
15.
B.
Krogmeier
,
F.
Staub
,
D.
Grabowski
,
U.
Rau
, and
T.
Kirchartz
,
Sustain. Energy Fuels
2
,
1027
(
2018
).
16.
N.
Dord̄ević
,
J. S.
Beckwith
,
M.
Yarema
,
O.
Yarema
,
A.
Rosspeintner
,
N.
Yazdani
,
J.
Leuthold
,
E.
Vauthey
, and
V.
Wood
,
ACS Photonics
5
,
4888
(
2018
).
17.
A.
Bou
,
A.
Pockett
,
H.
Cruanyes
,
D.
Raptis
,
T.
Watson
,
M. J.
Carnie
, and
J.
Bisquert
,
APL Mater.
10
,
051104
(
2022
).
18.
A.
Bou
,
H.
Āboliņš
,
A.
Ashoka
,
H.
Cruanyes
,
A.
Guerrero
,
F.
Deschler
, and
J.
Bisquert
,
ACS Energy Lett.
6
,
2248
(
2021
).
19.
C. J.
Hages
,
A.
Redinger
,
S.
Levcenko
,
H.
Hempel
,
M. J.
Koeper
,
R.
Agrawal
,
D.
Greiner
,
C. A.
Kaufmann
, and
T.
Unold
,
Adv. Energy Mater.
7
,
1700167
(
2017
).
20.
A.
Rose
,
Concepts in Photoconductivity and Allied Problems
(
Interscience Publishers
,
1963
), p. 19.
21.
A.
Zohar
,
M.
Kulbak
,
S. H.
Turren-Cruz
,
P. K.
Nayak
,
A.
Kama
,
A.
Hagfeldt
,
H. J.
Snaith
,
G.
Hodes
, and
D.
Cahen
,
ACS Appl. Mater. Interfaces
14
,
34171
(
2021
).
22.
U.
Haken
,
M.
Hundhausen
, and
L.
Ley
,
Phys. Rev. B
51
,
10579
(
1995
).
23.
D.
Ritter
,
E.
Zeldov
, and
K.
Weiser
,
Appl. Phys. Lett.
49
,
791
(
1986
).
24.
K.
Hattori
,
Y.
Koji
,
S.
Fukuda
,
W.
Ma
,
H.
Okamoto
, and
Y.
Hamakawa
,
J. Appl. Phys.
73
,
3846
(
1993
).
25.
S.
Stepanov
, in Handbook of Advanced Electronic and Photonic Materials and Devices (Academic Press, 2001), pp. 205–272.
26.
H.-J.
Lin
,
S.
Cacovich
,
A.
Rebai
,
J.
Rousset
, and
C.
Longeaud
,
ACS Appl. Mater. Interfaces
12
,
19495
(
2020
).
27.
N. A.
Korneev
,
S. S.
Mansurova
,
S. I.
Stepanov
,
T. J.
Hall
, and
A. K.
Powell
,
J. Opt. Soc. Am. B
13
,
2278
(
1996
).
28.
N.
Korneev
,
S.
Mansurova
, and
S.
Stepanov
,
J. Appl. Phys.
78
,
2925
(
1995
).
29.
M. P.
Petrov
,
I. A.
Sokolov
,
S. I.
Stepanov
, and
G. S.
Trofimov
,
J. Appl. Phys.
68
,
2216
(
1990
).
30.
G.
Trofimov
,
A.
Kosarev
,
A.
Kovrov
, and
P.
LeComber
,
J. Non-Cryst. Solids
137–138
,
483
(
1991
).
31.
M. C.
Gather
,
S.
Mansurova
, and
K.
Meerholz
,
Phys. Rev. B
75
,
165203
(
2007
).
32.
S.
Marimuthu
,
S.
Shriswaroop
,
M.
Muthumareeswaran
,
S.
Pandiaraj
,
A. N.
Alodhayb
,
T. A.
Alrebdi
, and
A.
Nirmala Grace
,
Sol. Energy
262
,
111804
(
2023
).
33.
W.
Raja
,
E.
Aydin
,
T. G.
Allen
, and
S.
De Wolf
,
Adv. Theory Simul.
4
,
2100191
(
2021
).
34.
N.
Korneev
,
S.
Mansurova
,
P.
Rodriguez
, and
S.
Stepanov
,
J. Opt. Soc. Am. B
14
,
396
(
1997
).
35.
C.
Bi
,
Y.
Shao
,
Y.
Yuan
,
Z.
Xiao
,
C.
Wang
,
Y.
Gao
, and
J.
Huang
,
J. Mater. Chem. A
2
,
18508
(
2014
).
36.
T.
Su
,
X.
Li
,
Y.
Zhang
,
F.
Zhang
, and
Z.
Sheng
,
Phys. Chem. Chem. Phys.
19
,
13147
(
2017
).
37.
Q.
Chen
,
H.
Zhou
,
T.-B.
Song
,
S.
Luo
,
Z.
Hong
,
H.-S.
Duan
,
L.
Dou
,
Y.
Liu
, and
Y.
Yang
,
Nano Lett.
14
,
4158
(
2014
).
38.
T.
Du
,
C. H.
Burgess
,
J.
Kim
,
J.
Zhang
,
J. R.
Durrant
, and
M. A.
McLachlan
,
Sustain. Energy Fuels
1
,
119
(
2017
).
39.
O.
Shargaieva
,
F.
Lang
,
J.
Rappich
,
T.
Dittrich
,
M.
Klaus
,
M.
Meixner
,
C.
Genzel
, and
N. H.
Nickel
,
ACS Appl. Mater. Interfaces
9
,
38428
(
2017
).
40.
D. A.
Jacobs
,
Y.
Wu
,
H.
Shen
,
C.
Barugkin
,
F. J.
Beck
,
T. P.
White
,
K.
Weber
, and
K. R.
Catchpole
,
Phys. Chem. Chem. Phys.
19
,
3094
(
2017
).
41.
M.
García-Batlle
,
O.
Baussens
,
S.
Amari
,
J.
Zaccaro
,
E.
Gros-Daillon
,
J.-M.
Verilhac
,
A.
Guerrero
, and
G.
Garcia-Belmonte
,
Adv. Electron. Mater.
6
,
2000485
(
2020
).
42.
S.
Reichert
,
Q.
An
,
Y.-W.
Woo
,
A.
Walsh
,
Y.
Vaynzof
, and
C.
Deibel
,
Nat. Commun.
11
,
6098
(
2020
).
43.
S.
Reichert
,
J.
Flemming
,
Q.
An
,
Y.
Vaynzof
,
J.-F.
Pietschmann
, and
C.
Deibel
,
Phys. Rev. Appl.
13
,
034018
(
2020
).
You do not currently have access to this content.