In recent years, the implementation of thin-film Ta has led to improved coherence times in superconducting circuits. Efforts to further optimize this materials set have become a focus of the subfield of materials for superconducting quantum computing. It has been previously hypothesized that grain size could be correlated with device performance. In this work, we perform a comparative grain size experiment with α-Ta on c axis sapphire. Our evaluation methods include both room-temperature chemical and structural characterization and cryogenic microwave measurements, and we report no statistical difference in device performance between smaller- and larger-grain-size devices with grain sizes of 924 and 1700 nm 2, respectively. These findings suggest that grain size is not correlated with loss in the parameter regime of interest for Ta grown on c axis sapphire, narrowing the parameter space for optimization of this materials set.

1.
M.
Kjaergaard
,
M. E.
Schwartz
,
J.
Braumüller
,
P.
Krantz
,
J. I.-J.
Wang
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Superconducting qubits: Current state of play
,”
Annu. Rev. Condens. Matter Phys.
11
,
369
395
(
2020
).
2.
H.
Zhang
,
S.
Chakram
,
T.
Roy
,
N.
Earnest
,
Y.
Lu
,
Z.
Huang
,
D. K.
Weiss
,
J.
Koch
, and
D. I.
Schuster
, “
Universal fast-flux control of a coherent, low-frequency qubit
,”
Phys. Rev. X
11
,
011010
(
2021
).
3.
E.
Hyyppä
,
S.
Kundu
,
C. F.
Chan
,
A.
Gunyhó
,
J.
Hotari
,
D.
Janzso
,
K.
Juliusson
,
O.
Kiuru
,
J.
Kotilahti
,
A.
Landra
,
W.
Liu
,
F.
Marxer
,
A.
Mäkinen
,
J.-L.
Orgiazzi
,
M.
Palma
,
M.
Savytskyi
,
F.
Tosto
,
J.
Tuorila
,
V.
Vadimov
,
T.
Li
,
C.
Ockeloen-Korppi
,
J.
Heinsoo
,
K. Y.
Tan
,
J.
Hassel
, and
M.
Möttönen
, “
Unimon qubit
,”
Nat. Commun.
13
,
6895
(
2022
).
4.
J.
Howard
,
A.
Lidiak
,
C.
Jameson
,
B.
Basyildiz
,
K.
Clark
,
T.
Zhao
,
M.
Bal
,
J.
Long
,
D. P.
Pappas
,
M.
Singh
, and
Z.
Gong
, “Demonstrating two-qubit entangling gates at the quantum speed limit using superconducting qubits,” arXiv:2206.07716 (2022), arXiv:2206.07716 [quant-ph].
5.
J.
Preskill
, “
Quantum computing in the NISQ era and beyond
,”
Quantum
2
,
79
(
2018
).
6.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F. G.
Brandao
,
D. A.
Buell
, and
B.
Burkett
, “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
,
505
510
(
2019
).
7.
A. P. M.
Place
,
L. V. H.
Rodgers
,
P.
Mundada
,
B. M.
Smitham
,
M.
Fitzpatrick
,
Z.
Leng
,
A.
Premkumar
,
J.
Bryon
,
A.
Vrajitoarea
,
S.
Sussman
,
G.
Cheng
,
T.
Madhavan
,
H. K.
Babla
,
X. H.
Le
,
Y.
Gang
,
B.
Jäck
,
A.
Gyenis
,
N.
Yao
,
R. J.
Cava
,
N. P.
de Leon
, and
A. A.
Houck
, “
New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds
,”
Nat. Commun.
12
,
1779
(
2021
).
8.
K. D.
Crowley
,
R. A.
McLellan
,
A.
Dutta
,
N.
Shumiya
,
A. P. M.
Place
,
X.
Hoang Le
,
Y.
Gang
,
T.
Madhavan
,
N.
Khedkar
,
Y.
Cady Feng
,
E. A.
Umbarkar
,
X.
Gui
,
L. V. H.
Rodgers
,
Y.
Jia
,
M. M.
Feldman
,
S. A.
Lyon
,
M.
Liu
,
R. J.
Cava
,
A. A.
Houck
, and
N. P.
de Leon
, “Disentangling losses in tantalum superconducting circuits,” arXiv:2301.07848 (2023), arXiv:2301.07848 [quant-ph].
9.
A. P.
Read
,
B. J.
Chapman
,
C. U.
Lei
,
J. C.
Curtis
,
S.
Ganjam
,
L.
Krayzman
,
L.
Frunzio
, and
R. J.
Schoelkopf
, “Precision measurement of the microwave dielectric loss of sapphire in the quantum regime with parts-per-billion sensitivity,” arXiv:2206.14334 (2022), arXiv:2206.14334 [quant-ph].
10.
C.
Müller
,
J. H.
Cole
, and
J.
Lisenfeld
, “
Towards understanding two-level-systems in amorphous solids: Insights from quantum circuits
,”
Rep. Prog. Phys.
82
,
124501
(
2019
).
11.
C. R. H.
McRae
,
H.
Wang
,
J.
Gao
,
M. R.
Vissers
,
T.
Brecht
,
A.
Dunsworth
,
D. P.
Pappas
, and
J.
Mutus
, “
Materials loss measurements using superconducting microwave resonators
,”
Rev. Sci. Instrum.
91
,
091101
(
2020
).
12.
I.
Siddiqi
, “
Engineering high-coherence superconducting qubits
,”
Nat. Rev. Mater.
6
,
875
891
(
2021
).
13.
C.
Wang
,
X.
Li
,
H.
Xu
,
Z.
Li
,
J.
Wang
,
Z.
Yang
,
Z.
Mi
,
X.
Liang
,
T.
Su
,
C.
Yang
,
G.
Wang
,
W.
Wang
,
Y.
Li
,
M.
Chen
,
C.
Li
,
K.
Linghu
,
J.
Han
,
Y.
Zhang
,
Y.
Feng
,
Y.
Song
,
T.
Ma
,
J.
Zhang
,
R.
Wang
,
P.
Zhao
,
W.
Liu
,
G.
Xue
,
Y.
Jin
, and
H.
Yu
, “
Towards practical quantum computers: Transmon qubit with a lifetime approaching 0.5 milliseconds
,”
npj Quantum Inf.
8
,
3
(
2022
).
14.
L. D.
Alegria
,
D. M.
Tennant
,
K. R.
Chaves
,
J. R. I.
Lee
,
S. R.
O’Kelley
,
Y. J.
Rosen
, and
J. L.
DuBois
, “Two-level systems in nucleated and non-nucleated epitaxial alpha-tantalum films,” arXiv:2301.10306 (2023), arXiv:2301.10306 [cond-mat.supr-con].
15.
L.
Shi
,
T.
Guo
,
R.
Su
,
T.
Chi
,
Y.
Sheng
,
J.
Jiang
,
C.
Cao
,
J.
Wu
,
X.
Tu
,
G.
Sun
,
J.
Chen
, and
P.
Wu
, “
Tantalum microwave resonators with ultra-high intrinsic quality factors
,”
Appl. Phys. Lett.
121
,
242601
(
2022
).
16.
D. P.
Lozano
,
M.
Mongillo
,
X.
Piao
,
S.
Couet
,
D.
Wan
,
Y.
Canvel
,
A. M.
Vadiraj
,
T.
Ivanov
,
J.
Verjauw
,
R.
Acharya
,
J.
Van Damme
,
F. A.
Mohiyaddin
,
J.
Jussot
,
P. P.
Gowda
,
A.
Pacco
,
B.
Raes
,
J.
Van de Vondel
,
I. P.
Radu
,
B.
Govoreanu
,
J.
Swerts
,
A.
Potočnik
, and
K.
De Greve
, “Manufacturing high-Q superconducting α-tantalum resonators on silicon wafers,” arXiv:2211.16437 (2022), arXiv:2211.16437 [quant-ph].
17.
M.
Bal
,
A. A.
Murthy
,
S.
Zhu
,
F.
Crisa
,
X.
You
,
Z.
Huang
,
T.
Roy
,
J.
Lee
,
D.
van Zanten
,
R.
Pilipenko
,
I.
Nekrashevich
,
D.
Bafia
,
Y.
Krasnikova
,
C. J.
Kopas
,
E. O.
Lachman
,
D.
Miller
,
J. Y.
Mutus
,
M. J.
Reagor
,
H.
Cansizoglu
,
J.
Marshall
,
D. P.
Pappas
,
K.
Vu
,
K.
Yadavalli
,
J.-S.
Oh
,
L.
Zhou
,
M. J.
Kramer
,
F. Q.
Lecocq
,
D. P.
Goronzy
,
C. G.
Torres-Castanedo
,
G.
Pritchard
,
V. P.
Dravid
,
J. M.
Rondinelli
,
M. J.
Bedzyk
,
M. C.
Hersam
,
J.
Zasadzinski
,
J.
Koch
,
J. A.
Sauls
,
A.
Romanenko
, and
A.
Grassellino
, “Systematic improvements in transmon qubit coherence enabled by niobium surface encapsulation,” arXiv:2304.13257 [cond-mat, physics:quant-ph] (2023).
18.
A.
Premkumar
,
C.
Weiland
,
S.
Hwang
,
B.
Jäck
,
A. P.
Place
,
I.
Waluyo
,
A.
Hunt
,
V.
Bisogni
,
J.
Pelliciari
,
A.
Barbour
, and
M. S.
Miller
, “
Microscopic relaxation channels in materials for superconducting qubits
,”
Commun. Mater.
2
,
72
(
2021
).
19.
A.
Rabbani
and
S.
Ayatollahi
, “
Comparing three image processing algorithms to estimate the grain-size distribution of porous rocks from binary 2D images and sensitivity analysis of the grain overlapping degree
,”
Spec. Top. Rev. Porous Media: An Int. J.
6
,
71
89
(
2015
).
20.
G.
McGuire
,
G. K.
Schweitzer
, and
T. A.
Carlson
, “
Core electron binding energies in some group IIIA, VB, and VIB compounds
,”
Inorg. Chem.
12
,
2450
2453
(
1973
).
21.
F.
Himpsel
,
J.
Morar
,
F.
McFeely
,
R.
Pollak
, and
G.
Hollinger
, “
Core-level shifts and oxidation states of Ta and W: Electron spectroscopy for chemical analysis applied to surfaces
,”
Phys. Rev. B
30
,
7236
(
1984
).
22.
C. J.
Kopas
,
E.
Lachman
,
C. R. H.
McRae
,
Y.
Mohan
,
J. Y.
Mutus
,
A.
Nersisyan
, and
A.
Poudel
, “Simple coplanar waveguide resonator mask targeting metal-substrate interface,” arXiv:2204.07202 (2022), arXiv:2204.07202 [quant-ph].
23.
J.
Gao
, “The physics of superconducting microwave resonators,” Ph.D. thesis (California Institute of Technology, 2008).
24.
S.
Probst
,
F.
Song
,
P.
Bushev
,
A.
Ustinov
, and
M.
Weides
, “
Efficient and robust analysis of complex scattering data under noise in microwave resonators
,”
Rev. Sci. Instrum.
86
,
024706
(
2015
).
25.
M.
Khalil
,
M.
Stoutimore
,
F.
Wellstood
, and
K.
Osborn
, “
An analysis method for asymmetric resonator transmission applied to superconducting devices
,”
J. Appl. Phys.
111
,
054510
(
2012
).
26.
See https://github.com/Boulder-Cryogenic-Quantum-Testbed/ for data acquisition, preprocessing, and data fitting software used in this work.
27.
W. A.
Phillips
, “
Tunneling states in amorphous solids
,”
J. Low Temp. Phys.
7
,
351
360
(
1972
).
28.
S.
De Graaf
,
L.
Faoro
,
J.
Burnett
,
A.
Adamyan
,
A. Y.
Tzalenchuk
,
S.
Kubatkin
,
T.
Lindström
, and
A.
Danilov
, “
Suppression of low-frequency charge noise in superconducting resonators by surface spin desorption
,”
Nat. Commun.
9
,
1
6
(
2018
).
29.
H.
Jia
,
B.
Zhou
,
T.
Wang
,
Y.
Wu
,
L.
Yang
,
Z.
Ding
,
S.
Li
,
K.
Xiong
, and
J.
Feng
, “ α-tantalum (110) films grown on a-plane sapphire substrate by molecular beam epitaxy for low-loss superconducting coplanar waveguide resonators,” arXiv:2306.09566 [cond-mat, physics:physics] (2023).
30.
R. A.
McLellan
,
A.
Dutta
,
C.
Zhou
,
Y.
Jia
,
C.
Weiland
,
X.
Gui
,
A. P. M.
Place
,
K. D.
Crowley
,
X.
Hoang Le
,
T.
Madhavan
,
Y.
Gang
,
L.
Baker
,
A. R.
Head
,
I.
Waluyo
,
R.
Li
,
K.
Kisslinger
,
A.
Hunt
,
I.
Jarrige
,
S. A.
Lyon
,
A. M.
Barbour
,
R. J.
Cava
,
A. A.
Houck
,
S. L.
Hulbert
,
M.
Liu
,
A. L.
Walter
, and
N. P.
de Leon
, “Chemical profiles of the oxides on tantalum in state of the art superconducting circuits,” arXiv:2301.04567, arXiv:2301.04567 [cond-mat.mtrl-sci] (2023).
31.
R.
Knepper
,
B.
Stevens
, and
S. P.
Baker
, “
Effect of oxygen on the thermomechanical behavior of tantalum thin films during the β α phase transformation
,”
J. Appl. Phys.
100
,
123508
(
2006
).
32.
S.
Myers
,
J.
Lin
,
R. M.
Souza
,
W. D.
Sproul
, and
J. J.
Moore
, “
The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering
,”
Surf. Coat. Technol.
214
,
38
45
(
2013
).
33.
C. R.
McRae
and
N.
Materise
, See https://zenodo.org/record/8161535 for “Dataset for ‘Grain size in low loss superconducting ta thin films on c-axis sapphire’.”.

Supplementary Material

You do not currently have access to this content.