The unique physical properties of carbyne, a novel carbon nanostructure, have attracted considerable interest in modern nanotechnology. While carbyne synthesis has been accomplished successfully using diverse techniques, the underlying mechanisms governing the carbon monoxide-dependent catalytic synthesis of endohedral carbyne remain poorly understood. In this simulation-based study, we investigate the synthesis of endohedral carbyne from carbon and carbon monoxide radicals in the presence of a nickel catalyst inside double-walled carbon nanotubes with a (5,5)@(10,10) structure. The outcome of our investigation demonstrates that the incorporation of the carbon atom within the Nin@(5,5)@(10,10) model system initiates the formation of an elongated carbon chain. In contrast, upon the introduction of carbon monoxide radicals, the growth of the carbyne chain is inhibited as a result of the oxidation of endohedral nickel clusters by oxygen atoms after the initial steps of nucleation. Our findings align with prior theoretical, simulation, and experimental investigations, reinforcing their consistency and providing valuable insights into the synthesis of carbyne-based nanodevices that hold promising potential for future advancements in nanotechnology.

1.
V.
Meunier
et al, “
Carbon science perspective in 2022: Current research and future challenges
,”
Carbon
195
,
272
(
2022
).
2.
A. M.
Sladkov
and
Y. P.
Kudryavtsev
, “
Polyynes
,”
Russ. Chem. Rev.
32
,
229
(
1963
).
3.
R. J.
Lagow
et al, “
Synthesis of linear acetylenic carbon: The ‘Sp’ carbon allotrope
,”
Science
267
,
362
, (
1995
).
4.
V. I.
Artyukhov
,
M.
Liu
, and
B. I.
Yakobson
, “
Mechanically induced metal–insulator transition in carbyne
,”
Nano Lett.
14
,
4224
(
2014
).
5.
Y.
Gao
and
R. R.
Tykwinski
, “
Advances in polyynes to model carbyne
,”
Acc. Chem. Res.
55
,
3616
(
2022
).
6.
A.
Bianco
et al, “
A carbon science perspective in 2018: Current achievements and future challenges
,”
Carbon
132
,
785
(
2018
).
7.
C. S.
Casari
et al, “
Carbon-atom wires: 1-D systems with tunable properties
,”
Nanoscale
8
,
4414
(
2016
).
8.
K.
Zhang
,
Y.
Zhang
, and
L.
Shi
, “
A review of linear carbon chains
,”
Chin. Chem. Lett.
31
,
1746
(
2020
).
9.
C. S.
Casari
and
A.
Milani
, “
Carbyne: From the elusive allotrope to stable carbon atom wires
,”
MRS Commun.
8
,
207
(
2018
).
10.
M.
Liu
,
V. I.
Artyukhov
,
H.
Lee
,
F.
Xu
, and
B. I.
Yakobson
, “
Carbyne from first principles: Chain of C atoms, a nanorod or a nanorope
,”
ACS Nano
7
,
10075
(
2013
).
11.
M.
Wang
and
S.
Lin
, “
Ballistic thermal transport in carbyne and cumulene with micron-scale spectral acoustic phonon mean free path
,”
Sci. Rep.
5
,
18122
(
2016
).
12.
Y.
Prazdnikov
, “
Prospects of carbyne applications in microelectronics
,”
J. Mod. Phys.
02
,
845
848
(
2011
).
13.
P. B.
Sorokin
et al, “
Calcium-decorated carbyne networks as hydrogen storage media
,”
Nano Lett.
11
,
2660
(
2011
).
14.
B.
Pan
,
J.
Xiao
,
J.
Li
,
P.
Liu
,
C.
Wang
, and
G.
Yang
, “
Carbyne with finite length: The one-dimensional sp carbon
,”
Sci. Adv.
1
,
e1500857
(
2015
).
15.
D. W.
Boukhvalov
,
I. S.
Zhidkov
,
E. Z.
Kurmaev
,
E.
Fazio
,
S. O.
Cholakh
, and
L.
D'Urso
, “
Atomic and electronic structures of stable linear carbon chains on Ag-nanoparticles
,”
Carbon
128
,
296
(
2018
).
16.
X.
Zhao
,
Y.
Ando
,
Y.
Liu
,
M.
Jinno
, and
T.
Suzuki
, “
Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube
,”
Phys. Rev. Lett.
90
,
187401
(
2003
).
17.
W. Q.
Neves
et al, “
Effects of pressure on the structural and electronic properties of linear carbon chains encapsulated in double wall carbon nanotubes
,”
Carbon
133
,
446
(
2018
).
18.
N. F.
Andrade
,
T. L.
Vasconcelos
,
C. P.
Gouvea
,
B. S.
Archanjo
,
C. A.
Achete
,
Y. A.
Kim
,
M.
Endo
,
C.
Fantini
,
M. S.
Dresselhaus
, and
A. G.
Souza Filho
, “
Linear carbon chains encapsulated in multiwall carbon nanotubes: Resonance Raman spectroscopy and transmission electron microscopy studies
,”
Carbon
90
,
172
(
2015
).
19.
M.
Kijima
,
Y.
Sakai
, and
H.
Shirakawa
, “
Electrochemical synthesis of carbyne catalyzed by nickel complex
,”
Synth. Met.
71
,
1837
(
1995
).
20.
E.
Kano
,
M.
Takeguchi
,
J. I.
Fujita
, and
A.
Hashimoto
, “
Direct observation of Pt-terminating carbyne on graphene
,”
Carbon
80
,
382
(
2014
).
21.
Q.
Sun
et al, “
Bottom-up synthesis of metalated carbyne
,”
J. Am. Chem. Soc.
138
,
1106
(
2016
).
22.
C.
Jin
,
H.
Lan
,
L.
Peng
,
K.
Suenaga
, and
S.
Iijima
, “
Deriving carbon atomic chains from graphene
,”
Phys. Rev. Lett.
102
,
205501
(
2009
).
23.
V.
Scuderi
,
S.
Scalese
,
S.
Bagiante
,
G.
Compagnini
,
L.
D’Urso
, and
V.
Privitera
, “
Direct observation of the formation of linear c chain/carbon nanotube hybrid systems
,”
Carbon
47
,
2134
(
2009
).
24.
C. S.
Casari
et al, “
Low-frequency modes in the Raman spectrum of sp-sp2 nanostructured carbon
,”
Phys. Rev. B
77
,
195444
(
2008
).
25.
L.
Shi
et al, “
Confined linear carbon chains as a route to bulk carbyne
,”
Nat. Mater.
15
,
6
(
2016
).
26.
S.
Toma
,
K.
Asaka
,
M.
Irita
, and
Y.
Saito
, “
Bulk synthesis of linear carbon chains confined inside single-wall carbon nanotubes by vacuum discharge
,”
Surf. Interface Anal.
51
,
131
(
2019
).
27.
C.
Zhao
,
R.
Kitaura
,
H.
Hara
,
S.
Irle
, and
H.
Shinohara
, “
Growth of linear carbon chains inside thin double-wall carbon nanotubes
,”
J. Phys. Chem. C
115
,
13166
(
2011
).
28.
S.
Heeg
et al, “
Carbon nanotube chirality determines properties of encapsulated linear carbon chain
,”
Nano Lett.
18
,
5426
(
2018
).
29.
L.
Shi
et al, “
Toward confined carbyne with tailored properties
,”
Nano Lett.
21
,
1096
(
2021
).
30.
M.
Endo
et al, “
Nanotube coalescence-inducing mode: A novel vibrational mode in carbon systems
,”
Small
2
,
1031
(
2006
).
31.
J.
Ha
et al, “
Ultrafast structural evolution and formation of linear carbon chains in single-walled carbon nanotube networks by femtosecond laser irradiation
,”
Nanoscale
9
,
16627
(
2017
).
32.
L.
Shi
et al, “
Templated direct growth of ultra-thin double-walled carbon nanotubes
,”
Nanoscale
10
,
21254
(
2018
).
33.
P. M.
Ajayan
and
S.
Iijima
, “
Capillarity-induced filling of carbon nanotubes
,”
Nature
361
,
333
(
1993
).
34.
A. N.
Khlobystov
,
D. A.
Britz
, and
G. A. D.
Briggs
, “
Molecules in carbon nanotubes
,”
Acc. Chem. Res.
38
,
901
(
2005
).
35.
H.
Shinohara
, “
Peapods: Exploring the inner space of carbon nanotubes
,”
Jpn. J. Appl. Phys.
57
,
020101
(
2018
).
36.
J.
Zhang
et al, “
Synthesis and transformation of linear adamantane assemblies inside carbon nanotubes
,”
ACS Nano
6
,
8674
(
2012
).
37.
U.
Khalilov
and
E. C.
Neyts
, “
Mechanisms of selective nanocarbon synthesis inside carbon nanotubes
,”
Carbon
171
,
72
(
2021
).
38.
U.
Khalilov
et al, “
Nanoscale mechanisms of CNT growth and etching in plasma environment
,”
J. Phys. D: Appl. Phys.
50
,
184001
(
2017
).
39.
X.
Pan
and
X.
Bao
, “
The effects of confinement inside carbon nanotubes on catalysis
,”
Acc. Chem. Res.
44
,
553
(
2011
).
40.
S. A.
Miners
,
G. A.
Rance
, and
A. N.
Khlobystov
, “
Chemical reactions confined within carbon nanotubes
,”
Chem. Soc. Rev.
45
,
4727
(
2016
).
41.
U.
Khalilov
,
C.
Vets
, and
E. C.
Neyts
, “
Catalyzed growth of encapsulated carbyne
,”
Carbon
153
,
1
(
2019
).
42.
G. R.
Berdiyorov
,
U.
Khalilov
,
H.
Hamoudi
, and
E. C.
Neyts
, “
Effect of chemical modification on electronic transport properties of carbyne
,”
J. Comput. Electron.
20
,
848
(
2021
).
43.
A. P.
Thompson
et al, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
44.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
, “
ReaxFF: A reactive force field for hydrocarbons
,”
J. Phys. Chem. A
105
,
9396
(
2001
).
45.
C.
Zou
,
Y. K.
Shin
,
A. C. T.
van Duin
,
H.
Fang
, and
Z.-K.
Liu
, “
Molecular dynamics simulations of the effects of vacancies on nickel self-diffusion, oxygen diffusion and oxidation initiation in nickel, using the ReaxFF reactive force field
,”
Acta Mater.
83
,
102
(
2015
).
46.
G.
Chen
,
S.
Bandow
,
E. R.
Margine
,
C.
Nisoli
,
A. N.
Kolmogorov
,
V. H.
Crespi
,
R.
Gupta
,
G. U.
Sumanasekera
,
S.
Iijima
, and
P. C.
Eklund
, “
Chemically doped double-walled carbon nanotubes: Cylindrical molecular capacitors
,”
Phys. Rev. Lett.
90
,
257403
(
2003
).
47.
A.
Charlier
,
E.
McRae
,
R.
Heyd
,
M. F.
Charlier
, and
D.
Moretti
, “
Classification for double-walled carbon nanotubes
,”
Carbon
37
,
1779
(
1999
).
48.
R.
Saito
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Electronic structure of double-layer graphene tubules
,”
J. Appl. Phys.
73
,
494
(
1993
).
49.
A.
Bondi
, “
van der Waals volumes and radii
,”
J. Phys. Chem.
68
,
441
(
1964
).
50.
A.
Peigney
et al, “
Specific surface area of carbon nanotubes and bundles of carbon nanotubes
,”
Carbon
39
,
507
(
2001
).
51.
H. J.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular-dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
(
1984
).
52.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
53.
U.
Khalilov
,
A.
Bogaerts
, and
E. C.
Neyts
, “
Microscopic mechanisms of vertical graphene and carbon nanotube cap nucleation from hydrocarbon growth precursors
,”
Nanoscale
6
,
9206
(
2014
).
54.
Y.-H.
Shin
and
S.
Hong
, “
Carbon diffusion around the edge region of nickel nanoparticles
,”
Appl. Phys. Lett.
92
,
043103
(
2008
).
55.
A.
Timoshevskii
,
S.
Kotrechko
, and
Y.
Matviychuk
, “
Atomic structure and mechanical properties of carbyne
,”
Phys. Rev. B
91
,
245434
(
2015
).
56.
H. H.
Madden
,
J.
Küppers
, and
G.
Ertl
, “
Interaction of carbon monoxide with (110) nickel surfaces
,”
J. Chem. Phys.
58
,
3401
(
1973
).
57.
A.
Bahl
,
Essentials of Physical Chemistry
,
28th ed.
(
S Chand Publishing
,
New Delhi
,
2019
).
58.
R. E.
Peierls
,
Quantum Theory of Solids
(
Oxford University Press
,
1955
).
59.
X.
Fan
,
L.
Liu
,
J.
Lin
,
Z.
Shen
, and
J. L.
Kuo
, “
Density functional theory study of finite carbon chains
,”
ACS Nano
3
,
3788
(
2009
).

Supplementary Material

You do not currently have access to this content.