A comprehensive physics-based modeling framework for electromigration (EM) in copper nano-interconnects is presented. It combines the three stages of stress evolution, void nucleation, and void dynamics in a single fully coupled and consolidated platform. Mechanical stress evolution, pre- and post-void nucleation, and its impact on void dynamics are deciphered, which enables accurate predictions of EM aging processes as validated by dedicated EM experiments. Subsequently, the experimentally validated model is utilized to shed light on the impact of a number of manufacturing variables, namely, line extension, via taper angle, and the effectiveness of the via bottom flux divergence point. A linear correlation between the ion leakage through the via bottom barrier and the peak tensile stress at the cathode was observed in long lines. In short lines, a blocked cathode end with atomic leakage through the anode end weakens the back-stress effect and threatens the Blech effect induced interconnect immortality. Increasing the line extension length was shown to increase the EM lifetime by about 40%. This impact was saturated beyond 1 critical dimension of line extension. On the other hand, the via taper angle increased the upstream EM lifetime by about twofold when the taper angle was increased from 0° to 30°, which indicates that the change of via taper angle has a stronger impact on EM lifetime compared to the line extension.

1.
S.
Choi
,
C.
Christiansen
,
L.
Cao
,
J.
Zhang
,
R.
Flippi
,
T.
Shen
,
K. B.
Yeap
,
S.
Ogden
,
H.
Zhang
,
B.
Fu
, and
P.
Justison
, “
Effect of metal line width on electromigration of BEOL Cu interconnects
,” in
2018 IEEE International Reliability Physics Symposium (IRPS)
,
CA
(IEEE,
2018
), pp. 4F.4-1–4F.4-6.
2.
J. R.
Black
, “
Mass transport of aluminum by momentum exchange with conducting electrons
,” in
2005 IEEE International Reliability Physics Symposium, 2005
. Proceedings. 43rd Annual.,
San Jose, CA, USA, 2005
(IEEE,
1967
), pp. 1–6.
3.
M. A.
Meyer
,
M.
Herrman
,
E.
Langer
, and
E.
Zschech
, “
In situ SEM observation of electromigration phenomena in fully embedded copper interconnect structures
,”
Microelectron. Eng.
64
(
1–4
),
375
382
(
2002
).
4.
A. V.
Vairagar
,
S. G.
Mhaisalkar
,
A.
Krishnamoorthy
,
K. N.
Tu
,
A. M.
Gusak
,
M. A.
Meyer
, and
E.
Zschech
, “
In situ observation of electromigration-induced void migration in dual-damascene Cu interconnect structures
,”
Appl. Phys. Lett.
85
(
13
),
2502
2504
(
2004
).
5.
C.
Witt
,
V.
Calero
,
C. K.
Hu
, and
G.
Bonilla
, “
Electromigration: Void dynamics
,”
IEEE Trans. Device Mater. Reliab.
16
(
4
),
446
451
(
2016
).
6.
K.
Vanstreels
,
P.
Czarnecki
,
T.
Kirimura
,
Y. K.
Siew
,
I.
De Wolf
,
J.
Bommels
,
Z.
Tőkei
, and
K.
Croes
, “
In-situ scanning electron microscope observation of electromigration-induced void growth in 30 nm ½ pitch Cu interconnect structures
,”
J. Appl. Phys.
115
(
7
),
074305
(
2014
).
7.
M. A.
Korhonen
,
P.
Borgesen
,
K. N.
Tu
, and
C.-Y.
Li
, “
Stress evolution due to electromigration in confined metal lines
,”
J. Appl. Phys.
73
(
8
),
3790
3799
(
1993
).
8.
M. E.
Sarychev
and
Y. V.
Zhitnikov
, “
General model for mechanical stress evolution during electromigration
,”
J. Appl. Phys.
86
,
3068
3075
(
1999
).
9.
B. M.
Clemens
,
W. D.
Nix
, and
R. J.
Gleixner
, “
Void nucleation on a contaminated patch
,”
J. Mater. Res.
12
(
8
),
2038
2042
(
1997
).
10.
F.
Yost
,
D.
Amos
, and
A.
Romig
, “
Stress-driven diffusive voiding of aluminum conductor lines
,” in
27th Annual Proceedings, International Reliability Physics Symposium
(IEEE,
1989)
, pp. 193–201.
11.
A. F.
Bower
and
S.
Shankar
, “
A finite element model of electromigration induced void nucleation, growth and evolution in interconnects
,”
Modell. Simul. Mater. Sci. Eng.
15
(
8
),
923
940
(
2007
).
12.
H.
Zahedmanesh
,
O.
Varela Pedreira
,
Z.
Tőkei
, and
K.
Croes
, “
Investigating the electromigration limits of Cu nanointerconnects using a novel hybrid physics-based model
,”
J. Appl. Phys.
126
(
5
),
055102
(
2019
).
13.
R.
Kirchheim
, “
Stress and electromigration in Al-lines of integrated circuits
,”
Acta Metall. Mater.
40
(
2
),
309
323
(
1992
).
14.
M.
Shatzkes
and
J. R.
Lloyd
, “
A model for conductor failure considering diffusion concurrently with electromigration resulting in a current exponent of 2
,”
J. Appl. Phys.
59
(
11
),
3890
3893
(
1986
).
15.
H. Y. C.
Basaran
and
D. C.
Hopkins
, “
Numerical simulation of stress evolution during electromigration in IC interconnect lines
,”
IEEE Trans. Compon. Packag. Technol.
26
(
3
),
673
681
(
2003
).
16.
H.
Ceric
,
R.
Lacerda de Orio
,
J.
Cervenka
, and
S.
Selberherr
, “
Copper microstructure impact on evolution of electromigration induced voids
,” in
International Conference on Simulation of Semiconductor Processes and Devices
(IEEE,
2009
), pp. 1–4.
17.
P. A.
Flinn
, “
Mechanical stress in VLSI interconnections: Origins, effects, measurements, and modeling
,”
MRS Bull.
20
(
11
),
70
73
(
1995
).
18.
R. J.
Gleixner
and
W. D.
Nix
, “
A physically based model of electromigration and stress-induced void formation in microelectronic interconnects
,”
J. Appl. Phys.
86
(
4
),
1932
1944
(
1999
).
19.
E.
Arzt
,
O.
Kraft
,
W. D.
Nix
, and
J. E.
Sanchez
, Jr.
, “
Electromigration failure by shape change of voids in bamboo lines
,”
J. Appl. Phys.
76
(
3
),
1563
1571
(
1994
).
20.
A. S.
Saleh
,
H.
Zahedmanesh
, and
H.
Ceric
, “
Void-dynamics in nano-wires and the role of microstructure investigated via a multi-scale physics-based model
,”
J. Appl. Phys.
129
(
12
),
125102
(
2021
).
21.
D. N.
Bhate
,
A. F.
Bower
, and
A.
Kumar
, “
A phase field model for failure in interconnect lines due to coupled diffusion mechanisms
,”
J. Mech. Phys. Solids
50
(
10
),
2057
2083
(
2002
).
22.
H.
Ceric
,
H.
Zahedmanesh
, and
K.
Croes
, “
Analysis of electromigration failure of nano-interconnects through a combination of modeling and experimental methods
,”
Microelectron. Reliab.
100–101
,
113362
(
2019
).
23.
X.
Huang
,
T.
Yu
,
V.
Sukharev
, and
S. X.-D.
Tan
, “
Physics-based electromigration assessment for power grid networks
,” in
ACM/EDAC/IEEE Design Automation Conference (DAC)
(ACM Digital Library,
2014
), pp. 1–6.
24.
A.
Kteyan
and
V.
Sukharev
, “
Physics-based simulation of stress-induced and electromigration-induced voiding and their interactions in on-chip interconnects
,”
Microelectron. Eng.
247
,
111585
(
2021
).
25.
S. P.
Timoshenko
and
J. N.
Goodier
,
Theory of Elasticity
,
3rd ed.
(
McGraw-Hill
,
Tokyo
,
1970
).
26.
S. P.
Hau-Riege
and
C. V.
Thompson
, “
The effects of the mechanical properties of the confinement material on electromigration in metallic interconnects
,”
J. Mater. Res.
15
(
8
),
1797
1802
(
2000
).
27.
V.
Sukharev
,
A.
Kteyan
,
J.-H.
Choy
,
S.
Chatterjee
, and
F.
Najm
, “
Theoretical predictions of EM-induced degradation in test-structures and on-chip power grids with analytical and numerical analysis
,” in
IEEE International Reliability Physics Symposium (IRPS)
(IEEE,
2017
).
28.
R. J.
Gleixner
,
B. M.
Clemens
, and
W. D.
Nix
, “
Void nucleation in passivated interconnect lines: Effects of site geometries, interfaces and interface flaws
,”
J. Mater. Res.
12
(
8
),
2081
2090
(
1997
).
29.
C.
Herring
, “
Diffusional viscosity of a polycrystaline solid
,”
J. Appl. Phys.
21
,
437
445
(
1950
).
30.
H.
Zahedmanesh
,
O. V.
Pedreira
,
C.
Wilson
,
Z.
Tőkei
, and
K.
Croes
, “
Copper electromigration; prediction of scaling limits
,” in
IEEE (IITC)
(IEEE,
2019
).
31.
M.
McLean
, “
Determination of the surface energy of copper as a function of crystallographic orientation and temperature
,”
Acta Metall.
19
(
4
),
387
393
(
1971
).
32.
Z.
Cui
,
X.
Fan
, and
G.
Zhang
, “
Molecular dynamic study for concentration-dependent volume relaxation of vacancy
,”
Microelectron. Reliab.
120
,
114127
(
2021
).
33.
K.
Croes
,
M.
Lofrano
,
C.
Wilson
,
L.
Carbonell
,
Y.
Siew
,
G.
Beyer
, and
Z.
Tőkei
, “
Study of void formation kinetics in Cu interconnects using local sense structures
,” in
International Reliability Physics Symposium
(IEEE,
2011
), pp. 3E.5.1–3E.5.7.
34.
M. H.
van der Veen
,
O. V.
Pedreira
,
N.
Jourdan
,
S.
Park
,
H.
Struyf
,
Z.
Tőkei
,
C. L.
Cerantes
,
F.
Chen
,
X.
Xie
,
Z.
Wu
,
A.
Jansen
,
J.
Machillot
, and
A.
Cockburn
, “
Low resistance Cu vias for 24 nm pitch and beyond
,” in
IEEE International Interconnect Technology Conference (IITC)
,
San Jose, CA
(IEEE,
2022
), pp. 129–131.
35.
W. D.
Nix
and
E.
Arzt
, “
On void nucleation and growth in metal interconnect lines under electromigration conditions
,”
Metall. Trans. A
23
,
2007
2013
(
1992
).
36.
Z. H.
Gan
,
W.
Shao
,
S. G.
Mhaisalkar
,
Z.
Chen
,
H.
Li
,
K. N.
Tu
, and
A. M.
Gusak
, “
Reservoir effect and the role of low current density regions on electromigration lifetimes in copper interconnects
,”
J. Mater. Res.
21
(
9
),
2241
2245
(
2006
).
37.
O. V.
Pedreira
,
M.
Lofrano
,
H.
Zahedmanesh
,
P. J.
Roussel
,
M. V. D.
Veen
,
V.
Simons
,
E.
Chery
,
I.
Ciofi
, and
K.
Croes
, “
Assessment of critical Co electromigration parameters
,” in
IEEE International Reliability Physics Symposium (IRPS)
(IEEE,
2022
), pp. 8C.2-1–8C.2-7.

Supplementary Material

You do not currently have access to this content.