In the paper, a metasurface is investigated, the unit cell of which consists of two resonators. We show that the breaking of the axial symmetry of the unit cell in such a structure leads to the appearance of two Fano resonances instead of one that is characteristic of the symmetric unit cell. The two resonances are different, one of which is symmetric and the other is asymmetric. This is confirmed by calculating the phases of currents in the adjacent resonators. Modeling results are confirmed by experimental investigation of the metasurface spectrum in a microwave frequency range showing two resonances measured experimentally. A detailed study of the currents flowing in the adjacent resonators of the unit cell demonstrates that currents at the Fano resonance dips flow either in phase or in antiphase with respect to the external electric field, whereas in peaks this difference is π/2. This confirms the interference nature of the Fano effect.

1.
A.
Ali
,
A.
Mitra
, and
B.
Aïssa
, “
Metamaterials and metasurfaces: A review from the perspectives of materials, mechanisms and advanced metadevices
,”
Nanomaterials
12
,
1027
(
2022
).
2.
R. A.
Shelby
,
D. R.
Smith
, and
S.
Schultz
, “
Experimental verification of a negative index of refraction
,”
Science
292
,
77
79
(
2001
).
3.
D.
Schurig
,
J. J.
Mock
,
B. J.
Justice
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
, “
Metamaterial electromagnetic cloak at microwave frequencies
,”
Science
314
,
977
980
(
2006
).
4.
M. K.
Chen
,
Y.
Wu
,
L.
Feng
,
Q.
Fan
,
M.
Lu
,
T.
Xu
, and
D. P.
Tsai
, “
Principles, functions, and applications of optical meta-lens
,”
Adv. Opt. Mater.
9
,
2001414
(
2021
).
5.
A. H.
Dorrah
,
N. A.
Rubin
,
A.
Zaidi
,
M.
Tamagnone
, and
F.
Capasso
, “
Metasurface optics for on-demand polarization transformations along the optical path
,”
Nat. Photonics
15
,
287
296
(
2021
).
6.
G.-D.
Liu
,
X.
Zhai
,
L.-L.
Wang
,
Q.
Lin
,
S.-X.
Xia
,
X.
Luo
, and
C.-J.
Zhao
, “
A high-performance refractive index sensor based on Fano resonance in Si split-ring metasurface
,”
Plasmonics
13
,
15
19
(
2018
).
7.
Y. K.
Srivastava
,
R. T.
Ako
,
M.
Gupta
,
M.
Bhaskaran
,
S.
Sriram
, and
R.
Singh
, “
Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces
,”
Appl. Phys. Lett.
115
,
151105
(
2019
).
8.
B.
Lahiri
,
A. Z.
Khokhar
,
M.
Richard
,
S. G.
McMeekin
, and
N. P.
Johnson
, “
Asymmetric split ring resonators for optical sensing of organic materials
,”
Opt. Express
17
,
1107
1115
(
2009
).
9.
Z.
He
,
W.
Xue
,
W.
Cui
,
C.
Li
,
Z.
Li
,
L.
Pu
,
J.
Feng
,
X.
Xiao
,
X.
Wang
, and
G.
Li
, “
Tunable Fano resonance and enhanced sensing in a simple Au/TiO2 hybrid metasurface
,”
Nanomaterials
10
,
687
(
2020
).
10.
R.
Singh
,
W.
Cao
,
I.
Al-Naib
,
L.
Cong
,
W.
Withayachumnankul
, and
W.
Zhang
, “
Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces
,”
Appl. Phys. Lett.
105
,
171101
(
2014
).
11.
F.
Shen
,
Q.
Kang
,
J.
Wang
,
K.
Guo
,
Q.
Zhou
, and
Z.
Guo
, “
Dielectric metasurface-based high-efficiency mid-infrared optical filter
,”
Nanomaterials
8
,
938
(
2018
).
12.
Y.
Li
,
J.
Lin
,
H.
Guo
,
W.
Sun
,
S.
Xiao
, and
L.
Zhou
, “
A tunable metasurface with switchable functionalities: From perfect transparency to perfect absorption
,”
Adv. Opt. Mater.
8
,
1901548
(
2020
).
13.
Z. T.
Xie
,
J.
Wu
,
H.
Fu
, and
Q.
Li
, “
Tunable electro-and all-optical switch based on epsilon-near-zero metasurface
,”
IEEE Photonics J.
12
,
1
10
(
2020
).
14.
X.
Zang
,
B.
Yao
,
L.
Chen
,
J.
Xie
,
X.
Guo
,
A. V.
Balakin
,
A. P.
Shkurinov
, and
S.
Zhuang
, “
Metasurfaces for manipulating terahertz waves
,”
Light Adv. Manuf.
2
,
148
172
(
2021
).
15.
S.
Mallick
and
D. R.
Chowdhury
, “
Broadside-coupling-enabled insulator-to-metal transition in a terahertz metasurface
,”
Europhys. Lett.
138
,
55001
(
2022
).
16.
A. E.
Miroshnichenko
,
S.
Flach
, and
Y. S.
Kivshar
, “
Fano resonances in nanoscale structures
,”
Rev. Mod. Phys.
82
,
2257
(
2010
).
17.
S.
Zhang
,
D. A.
Genov
,
Y.
Wang
,
M.
Liu
, and
X.
Zhang
, “
Plasmon-induced transparency in metamaterials
,”
Phys. Rev. Lett.
101
,
047401
(
2008
).
18.
J.
Wallauer
,
A.
Bitzer
,
S.
Waselikowski
, and
M.
Walther
, “
Near-field signature of electromagnetic coupling in metamaterial arrays: A terahertz microscopy study
,”
Opt. Express
19
,
17283
17292
(
2011
).
19.
V.
Fedotov
,
M.
Rose
,
S.
Prosvirnin
,
N.
Papasimakis
, and
N.
Zheludev
, “
Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry
,”
Phys. Rev. Lett.
99
,
147401
(
2007
).
20.
K.
Aydin
,
I. M.
Pryce
, and
H. A.
Atwater
, “
Symmetry breaking and strong coupling in planar optical metamaterials
,”
Opt. Express
18
,
13407
13417
(
2010
).
21.
C.
Wu
,
A. B.
Khanikaev
,
R.
Adato
,
N.
Arju
,
A. A.
Yanik
,
H.
Altug
, and
G.
Shvets
, “
Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers
,”
Nat. Mater.
11
,
69
75
(
2012
).
22.
R.
Singh
,
I.
Al-Naib
,
W.
Cao
,
C.
Rockstuhl
,
M.
Koch
, and
W.
Zhang
, “
The Fano resonance in symmetry broken terahertz metamaterials
,”
IEEE Trans. Terahertz Sci. Technol.
3
,
820
826
(
2013
).
23.
Y.
Moritake
,
Y.
Kanamori
, and
K.
Hane
, “
Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars
,”
Opt. Lett.
39
,
4057
4060
(
2014
).
24.
T.
Cao
,
C.
Wei
,
R. E.
Simpson
,
L.
Zhang
, and
M. J.
Cryan
, “
Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity
,”
Sci. Rep.
4
,
4463
(
2014
).
25.
L.
Chen
,
N.
Xu
,
L.
Singh
,
T.
Cui
,
R.
Singh
,
Y.
Zhu
, and
W.
Zhang
, “
Defect-induced Fano resonances in corrugated plasmonic metamaterials
,”
Adv. Opt. Mater.
5
,
1600960
(
2017
).
26.
K.
Koshelev
,
S.
Lepeshov
,
M.
Liu
,
A.
Bogdanov
, and
Y.
Kivshar
, “
Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum
,”
Phys. Rev. Lett.
121
,
193903
(
2018
).
27.
D.
Seliuta
,
G.
Šlekas
,
G.
Valušis
, and
Ž.
Kancleris
, “
Fano resonance arising due to direct interaction of plasmonic and lattice modes in a mirrored array of split ring resonators
,”
Opt. Lett.
44
,
759
762
(
2019
).
28.
Ž.
Kancleris
,
G.
Šlekas
,
A.
Kamarauskas
, and
D.
Seliuta
, “Fano resonance in metasurfaces and its application,” in
2020 23rd International Microwave and Radar Conference (MIKON)
(IEEE, 2020), pp. 328–333.
29.
D.
Seliuta
,
G.
Šlekas
,
A.
Kamarauskas
, and
Ž.
Kancleris
, “
Guided lattice modes in terahertz metasurface deposited on ultrathin dielectric substrate
,”
IEEE Trans. Terahertz Sci. Technol.
12
,
345
352
(
2022
).
30.
A.
Kamarauskas
,
D.
Seliuta
,
G.
Šlekas
,
M.
Sadauskas
,
E.
Kvietkauskas
,
R.
Trusovas
,
K.
Ratautas
, and
Ž.
Kancleris
, “
Experimental demonstration of multiple Fano resonances in a mirrored array of split-ring resonators on a thick substrate
,”
Sci. Rep.
12
,
15846
(
2022
).
31.
A.
Taflove
and
S. C.
Hagness
.
Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House, 2005), pp. 1006. ISBN-13: 978-1580538329
.
32.
G.
Šlekas
,
P.
Ragulis
,
D.
Seliuta
, and
Ž.
Kancleris
, “
Using of generalized Goertzel algorithm for FDTD calculation of the transmission and reflection spectra of periodic structures
,”
IEEE Trans. Electromagn. Compat.
59
,
2038
2041
(
2017
).
33.
U.
Fano
, “
Effects of configuration interaction on intensities and phase shifts
,”
Phys. Rev.
124
,
1866
(
1961
).
34.
M. F.
Limonov
, “
Fano resonance for applications
,”
Adv. Opt. Photonics
13
,
703
771
(
2021
).
35.
C.
Garrido Alzar
,
M.
Martinez
, and
P.
Nussenzveig
, “
Classical analog of electromagnetically induced transparency
,”
Am. J. Phys.
70
,
37
41
(
2002
).
36.
S.
Satpathy
,
A.
Roy
, and
A.
Mohapatra
, “
Fano interference in classical oscillators
,”
Eur. J. Phys.
33
,
863
(
2012
).

Supplementary Material

You do not currently have access to this content.