We report on the observation of a nonlinear intensity dependence of the terahertz radiation-induced ratchet effects in bilayer graphene with asymmetric dual-grating gate lateral lattices. These nonlinear ratchet currents are studied in structures of two designs with dual-grating gates fabricated on top of boron nitride encapsulated bilayer graphene and beneath it. The strength and sign of the photocurrent can be controllably varied by changing the bias voltages applied to individual dual-grating subgates and the back gate. The current consists of contributions insensitive to the radiation’s polarization state, defined by the orientation of the radiation electric field vector with respect to the dual-grating gate metal stripes, and the circular ratchet sensitive to the radiation helicity. We show that intense terahertz radiation results in a nonlinear intensity dependence caused by electron gas heating. At room temperature, the ratchet current saturates at high intensities of the order of hundreds to several hundreds of kW cm 2. At T = 4 K, the nonlinearity manifests itself at intensities that are one or two orders of magnitude lower; moreover, the photoresponse exhibits a complex dependence on the intensity, including a saturation and even a change of sign with increasing intensity. This complexity is attributed to the interplay of the Seebeck ratchet and the dynamic carrier-density redistribution, which feature different intensity dependencies and nonlinear behavior of the sample’s conductivity induced by electron gas heating. The latter is demonstrated by studying the THz photoconductivity. Our study demonstrates that graphene-based asymmetric dual-grating gate devices can be used as terahertz detectors at room temperature over a wide dynamic range, spanning many orders of magnitude of terahertz radiation power. Therefore, their integration together with current-driven read-out electronics is attractive for the operation with high-power pulsed sources.

1.
K.
Tamura
,
C.
Tang
,
D.
Ogiura
,
K.
Suwa
,
H.
Fukidome
,
Y.
Takida
,
H.
Minamide
,
T.
Suemitsu
,
T.
Otsuji
, and
A.
Satou
, “
Fast and sensitive terahertz detection with a current-driven epitaxial-graphene asymmetric dual-grating-gate field-effect transistor structure
,”
APL Photonics
7
,
126101
(
2022
).
2.
P.
Olbrich
,
J.
Kamann
,
M.
König
,
J.
Munzert
,
L.
Tutsch
,
J.
Eroms
,
D.
Weiss
,
M.-H.
Liu
,
L. E.
Golub
,
E. L.
Ivchenko
,
V. V.
Popov
,
D. V.
Fateev
,
K. V.
Mashinsky
,
F.
Fromm
,
T.
Seyller
, and
S. D.
Ganichev
, “
Terahertz ratchet effects in graphene with a lateral superlattice
,”
Phys. Rev. B
93
,
075422
(
2016
).
3.
S. D.
Ganichev
,
D.
Weiss
, and
J.
Eroms
, “
Terahertz electric field driven electric currents and ratchet effects in graphene
,”
Ann. Phys.
529
,
1600406
(
2017
).
4.
D. V.
Fateev
,
K. V.
Mashinsky
, and
V. V.
Popov
, “
Terahertz plasmonic rectification in a spatially periodic graphene
,”
Appl. Phys. Lett.
110
,
061106
(
2017
).
5.
D. V.
Fateev
,
K. V.
Mashinsky
,
J. D.
Sun
, and
V. V.
Popov
, “
Enhanced plasmonic rectification of terahertz radiation in spatially periodic graphene structures towards the charge neutrality point
,”
Solid-State Electron.
157
,
20
24
(
2019
).
6.
S.
Boubanga-Tombet
,
W.
Knap
,
D.
Yadav
,
A.
Satou
,
D. B.
But
,
V. V.
Popov
,
I. V.
Gorbenko
,
V.
Kachorovskii
, and
T.
Otsuji
, “
Room-temperature amplification of terahertz radiation by grating-gate graphene structures
,”
Phys. Rev. X
10
,
031004
(
2020
).
7.
J. A.
Delgado-Notario
,
V.
Clericò
,
E.
Diez
,
J. E.
Velázquez-Pérez
,
T.
Taniguchi
,
K.
Watanabe
,
T.
Otsuji
, and
Y. M.
Meziani
, “
Asymmetric dual-grating gates graphene FET for detection of terahertz radiations
,”
APL Photonics
5
,
066102
(
2020
).
8.
J. A.
Delgado-Notario
,
W.
Knap
,
V.
Clericò
,
J.
Salvador-Sánchez
,
J.
Calvo-Gallego
,
T.
Taniguchi
,
K.
Watanabe
,
T.
Otsuji
,
V. V.
Popov
,
D. V.
Fateev
,
E.
Diez
,
J. E.
Velázquez-Pérez
, and
Y. M.
Meziani
, “
Enhanced terahertz detection of multigate graphene nanostructures
,”
Nanophotonics
11
,
519
529
(
2022
).
9.
M. Y.
Morozov
,
V. V.
Popov
, and
D. V.
Fateev
, “
Electrically controllable active plasmonic directional coupler of terahertz signal based on a periodical dual grating gate graphene structure
,”
Sci. Rep.
11
,
11431
(
2021
).
10.
E.
Mönch
,
S. O.
Potashin
,
K.
Lindner
,
I.
Yahniuk
,
L. E.
Golub
,
V. Y.
Kachorovskii
,
V. V.
Bel’kov
,
R.
Huber
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Eroms
,
D.
Weiss
, and
S. D.
Ganichev
, “
Ratchet effect in spatially modulated bilayer graphene: Signature of hydrodynamic transport
,”
Phys. Rev. B
105
,
045404
(
2022
).
11.
E.
Mönch
,
S. O.
Potashin
,
K.
Lindner
,
I.
Yahniuk
,
L. E.
Golub
,
V. Y.
Kachorovskii
,
V. V.
Bel’kov
,
R.
Huber
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Eroms
,
D.
Weiss
, and
S. D.
Ganichev
, “
Cyclotron and magnetoplasmon resonances in bilayer graphene ratchets
,”
Phys. Rev. B
107
,
115408
(
2023
).
12.
P.
Olbrich
,
J.
Allerdings
,
V. V.
Bel’kov
,
S. A.
Tarasenko
,
D.
Schuh
,
W.
Wegscheider
,
T.
Korn
,
C.
Schüller
,
D.
Weiss
, and
S. D.
Ganichev
, “
Magnetogyrotropic photogalvanic effect and spin dephasing in (110)-grown GaAs/Al xGa 1 xAs quantum well structures
,”
Phys. Rev. B
79
,
245329
(
2009
).
13.
E. L.
Ivchenko
and
S. D.
Ganichev
, “
Ratchet effects in quantum wells with a lateral superlattice
,”
JETP Lett.
93
,
673
682
(
2011
) [Pisma v ZhETF 93, 752 (2011)].
14.
L.
Ermann
and
D. L.
Shepelyansky
, “
Relativistic graphene ratchet on semidisk Galton board
,”
Eur. Phys. J. B
79
,
357
362
(
2011
).
15.
I.
Bisotto
,
E. S.
Kannan
,
S.
Sassine
,
R.
Murali
,
T. J.
Beck
,
L.
Jalabert
, and
J.-C.
Portal
, “
Microwave based nanogenerator using the ratchet effect in Si/SiGe heterostructures
,”
Nanotechnology
22
,
245401
(
2011
).
16.
P.
Olbrich
,
J.
Karch
,
E. L.
Ivchenko
,
J.
Kamann
,
B.
März
,
M.
Fehrenbacher
,
D.
Weiss
, and
S. D.
Ganichev
, “
Classical ratchet effects in heterostructures with a lateral periodic potential
,”
Phys. Rev. B
83
,
165320
(
2011
).
17.
E. S.
Kannan
,
I.
Bisotto
,
J.-C.
Portal
,
T. J.
Beck
, and
L.
Jalabert
, “
Energy free microwave based signal communication using ratchet effect
,”
Appl. Phys. Lett.
101
,
143504
(
2012
).
18.
S.
Hubmann
,
V. V.
Bel’kov
,
L. E.
Golub
,
V. Y.
Kachorovskii
,
M.
Drienovsky
,
J.
Eroms
,
D.
Weiss
, and
S. D.
Ganichev
, “
Giant ratchet magneto-photocurrent in graphene lateral superlattices
,”
Phys. Rev. Res.
2
,
033186
(
2020
).
19.
D.
Coquillat
,
S.
Nadar
,
F.
Teppe
,
N.
Dyakonova
,
S.
Boubanga-Tombet
,
W.
Knap
,
T.
Nishimura
,
T.
Otsuji
,
Y. M.
Meziani
,
G. M.
Tsymbalov
, and
V. V.
Popov
, “
Room temperature detection of sub-terahertz radiation in double-grating-gate transistors
,”
Opt. Express
18
,
6024
(
2010
).
20.
W.
Knap
,
S.
Nadar
,
H.
Videlier
,
S.
Boubanga-Tombet
,
D.
Coquillat
,
N.
Dyakonova
,
F.
Teppe
,
K.
Karpierz
,
J.
Łusakowski
,
M.
Sakowicz
,
I.
Kasalynas
,
D.
Seliuta
,
G.
Valusis
,
T.
Otsuji
,
Y.
Meziani
,
A. E.
Fatimy
,
S.
Vandenbrouk
,
K.
Madjour
,
D.
Théron
, and
C.
Gaquière
, “
Field effect transistors for terahertz detection and emission
,”
J. Infrared Millim. Terahertz Waves
32
,
618
628
(
2010
).
21.
V. V.
Popov
,
D. V.
Fateev
,
T.
Otsuji
,
Y. M.
Meziani
,
D.
Coquillat
, and
W.
Knap
, “
Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell
,”
Appl. Phys. Lett.
99
,
243504
(
2011
).
22.
T.
Watanabe
,
Y.
Kurita
,
A.
Satou
,
T.
Suemitsu
,
W.
Knap
,
V. V.
Popov
, and
T.
Otsuji
, “Terahertz monochromatic coherent emission from an asymmetric chirped dual-grating-gate InP-HEMT with a photonic vertical cavity,” in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2013).
23.
V. V.
Popov
, “
Terahertz rectification by periodic two-dimensional electron plasma
,”
Appl. Phys. Lett.
102
,
253504
(
2013
).
24.
T.
Otsuji
,
T.
Watanabe
,
S. A.
Boubanga Tombet
,
A.
Satou
,
W. M.
Knap
,
V. V.
Popov
,
M.
Ryzhii
, and
V.
Ryzhii
, “
Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene
,”
IEEE Trans. Terahertz Sci. Technol.
3
,
63
71
(
2013
).
25.
T.
Watanabe
,
S. A.
Boubanga-Tombet
,
Y.
Tanimoto
,
D.
Fateev
,
V.
Popov
,
D.
Coquillat
,
W.
Knap
,
Y. M.
Meziani
,
Y.
Wang
,
H.
Minamide
,
H.
Ito
, and
T.
Otsuji
, “
InP- and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging
,”
IEEE Sens. J.
13
,
89
99
(
2013
).
26.
T.
Otsuji
,
T.
Watanabe
,
S. A.
Boubanga Tombet
,
A.
Satou
,
V.
Ryzhii
,
V.
Popov
, and
W.
Knap
, “
Emission and detection of terahertz radiation using two-dimensional plasmons in semiconductor nanoheterostructures for nondestructive evaluations
,”
Opt. Eng.
53
,
031206
(
2013
).
27.
Y.
Kurita
,
G.
Ducournau
,
D.
Coquillat
,
A.
Satou
,
K.
Kobayashi
,
S.
Boubanga Tombet
,
Y. M.
Meziani
,
V. V.
Popov
,
W.
Knap
,
T.
Suemitsu
, and
T.
Otsuji
, “
Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics
,”
Appl. Phys. Lett.
104
,
251114
(
2014
).
28.
S.
Boubanga-Tombet
,
Y.
Tanimoto
,
A.
Satou
,
T.
Suemitsu
,
Y.
Wang
,
H.
Minamide
,
H.
Ito
,
D. V.
Fateev
,
V. V.
Popov
, and
T.
Otsuji
, “
Current-driven detection of terahertz radiation using a dual-grating-gate plasmonic detector
,”
Appl. Phys. Lett.
104
,
262104
(
2014
).
29.
P.
Faltermeier
,
P.
Olbrich
,
W.
Probst
,
L.
Schell
,
T.
Watanabe
,
S. A.
Boubanga-Tombet
,
T.
Otsuji
, and
S. D.
Ganichev
, “
Helicity sensitive terahertz radiation detection by dual-grating-gate high electron mobility transistors
,”
J. Appl. Phys.
118
,
084301
(
2015
).
30.
V. V.
Popov
,
D. V.
Fateev
,
E. L.
Ivchenko
, and
S. D.
Ganichev
, “
Noncentrosymmetric plasmon modes and giant terahertz photocurrent in a two-dimensional plasmonic crystal
,”
Phys. Rev. B
91
,
235436
(
2015
).
31.
I. V.
Rozhansky
,
V. Y.
Kachorovskii
, and
M. S.
Shur
, “
Helicity-driven ratchet effect enhanced by plasmons
,”
Phys. Rev. Lett.
114
,
246601
(
2015
).
32.
H.
Spisser
,
A.-S.
Grimault-Jacquin
,
N.
Zerounian
,
A.
Aassime
,
L.
Cao
,
F.
Boone
,
H.
Maher
,
Y.
Cordier
, and
F.
Aniel
, “
Room-temperature AlGaN/GaN terahertz plasmonic detectors with a zero-bias grating
,”
J. Infrared Millim. Terahertz Waves
37
,
243
257
(
2015
).
33.
Y.
Koseki
,
V.
Ryzhii
,
T.
Otsuji
,
V. V.
Popov
, and
A.
Satou
, “
Giant plasmon instability in a dual-grating-gate graphene field-effect transistor
,”
Phys. Rev. B
93
,
245408
(
2016
).
34.
D. V.
Fateev
,
K. V.
Mashinsky
,
H.
Qin
,
J.
Sun
, and
V. V.
Popov
, “
Giant effect of terahertz-radiation rectification in periodic graphene plasmonic structures
,”
Semiconductors
51
,
1500
1504
(
2017
).
35.
G.
Rupper
,
S.
Rudin
, and
M. S.
Shur
, “
Ratchet effect in partially gated multifinger field-effect transistors
,”
Phys. Rev. Appl.
9
,
064007
(
2018
).
36.
A.
Yu
, “
Plasmon ratchet effect with electrons and holes simultaneously existing in the graphene channel: A promising effect for the terahertz detection
,”
J. Phys. D: Appl. Phys.
51
,
395103
(
2018
).
37.
P.
Sai
,
S. O.
Potashin
,
M.
Szoła
,
D.
Yavorskiy
,
G.
Cywiński
,
P.
Prystawko
,
J.
Łusakowski
,
S. D.
Ganichev
,
S.
Rumyantsev
,
W.
Knap
, and
V.
Yu. Kachorovskii
, “
Beatings of ratchet current magneto-oscillations in GaN-based grating gate structures: Manifestation of spin-orbit band splitting
,”
Phys. Rev. B
104
,
045301
(
2021
).
38.
T.
Otsuji
,
S. A.
Boubanga-Tombet
,
A.
Satou
,
D.
Yadav
,
H.
Fukidome
,
T.
Watanabe
,
T.
Suemitsu
,
A. A.
Dubinov
,
V. V.
Popov
,
W.
Knap
,
V.
Kachorovskii
,
K.
Narahara
,
M.
Ryzhii
,
V.
Mitin
,
M. S.
Shur
, and
V.
Ryzhii
, “
Graphene-based plasmonic metamaterial for terahertz laser transistors
,”
Nanophotonics
11
,
1677
1696
(
2022
).
39.
X.
Xu
,
N. M.
Gabor
,
J. S.
Alden
,
A. M.
van der Zande
, and
P. L.
McEuen
, “
Photo-thermoelectric effect at a graphene interface junction
,”
Nano Lett.
10
,
562
566
(
2009
).
40.
T.
Müller
,
F.
Xia
, and
P.
Avouris
, “
Graphene photodetectors for high-speed optical communications
,”
Nat. Photonics
4
,
297
301
(
2010
).
41.
J.
Yan
,
M.-H.
Kim
,
J. A.
Elle
,
A. B.
Sushkov
,
G. S.
Jenkins
,
H. M.
Milchberg
,
M. S.
Fuhrer
, and
H. D.
Drew
, “
Dual-gated bilayer graphene hot-electron bolometer
,”
Nat. Nanotechnol.
7
,
472
478
(
2012
).
42.
T. J.
Echtermeyer
,
P. S.
Nene
,
M.
Trushin
,
R. V.
Gorbachev
,
A. L.
Eiden
,
S.
Milana
,
Z.
Sun
,
J.
Schliemann
,
E.
Lidorikis
,
K. S.
Novoselov
, and
A. C.
Ferrari
, “
Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors
,”
Nano Lett.
14
,
3733
3742
(
2014
).
43.
X.
Cai
,
A. B.
Sushkov
,
R. J.
Suess
,
M. M.
Jadidi
,
G. S.
Jenkins
,
L. O.
Nyakiti
,
R. L.
Myers-Ward
,
S.
Li
,
J.
Yan
,
D. K.
Gaskill
,
T. E.
Murphy
,
H. D.
Drew
, and
M. S.
Fuhrer
, “
Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene
,”
Nat. Nanotechnol.
9
,
814
819
(
2014
).
44.
P.
Faltermeier
,
G. V.
Budkin
,
J.
Unverzagt
,
S.
Hubmann
,
A.
Pfaller
,
V. V.
Bel’kov
,
L. E.
Golub
,
E. L.
Ivchenko
,
Z.
Adamus
,
G.
Karczewski
,
T.
Wojtowicz
,
V. V.
Popov
,
D. V.
Fateev
,
D. A.
Kozlov
,
D.
Weiss
, and
S. D.
Ganichev
, “
Magnetic quantum ratchet effect in (Cd,Mn)Te- and CdTe-based quantum well structures with a lateral asymmetric superlattice
,”
Phys. Rev. B
95
,
155442
(
2017
).
45.
P.
Faltermeier
,
G. V.
Budkin
,
S.
Hubmann
,
V. V.
Bel’kov
,
L. E.
Golub
,
E. L.
Ivchenko
,
Z.
Adamus
,
G.
Karczewski
,
T.
Wojtowicz
,
D. A.
Kozlov
,
D.
Weiss
, and
S. D.
Ganichev
, “
Circular and linear magnetic quantum ratchet effects in dual-grating-gate CdTe-based nanostructures
,”
Phys. E
101
,
178
187
(
2018
).
46.
L.
Wang
,
I.
Meric
,
P. Y.
Huang
,
Q.
Gao
,
Y.
Gao
,
H.
Tran
,
T.
Taniguchi
,
K.
Watanabe
,
L. M.
Campos
,
D. A.
Muller
,
J.
Guo
,
P.
Kim
,
J.
Hone
,
K. L.
Shepard
, and
C. R.
Dean
, “
One-dimensional electrical contact to a two-dimensional material
,”
Science
342
,
614
(
2013
).
47.
S. D.
Ganichev
and
W.
Prettl
,
Intense Terahertz Excitation of Semiconductors
(
Oxford University Press
,
Oxford
,
2005
).
48.
S. D.
Ganichev
,
W.
Prettl
, and
P. G.
Huggard
, “
Phonon assisted tunnel ionization of deep impurities in the electric field of far-infrared radiation
,”
Phys. Rev. Lett.
71
,
3882
3885
(
1993
).
49.
S. D.
Ganichev
,
I. N.
Yassievich
,
W.
Prettl
,
J.
Diener
,
B. K.
Meyer
, and
K. W.
Benz
, “
Tunneling ionization of autolocalized DX-centers in terahertz fields
,”
Phys. Rev. Lett.
75
,
1590
1593
(
1995
).
50.
S. D.
Ganichev
,
E.
Ziemann
,
T.
Gleim
,
W.
Prettl
,
I. N.
Yassievich
,
V. I.
Perel
,
I.
Wilke
, and
E. E.
Haller
, “
Carrier tunneling in high-frequency electric fields
,”
Phys. Rev. Lett.
80
,
2409
2412
(
1998
).
51.
S. D.
Ganichev
,
Y. V.
Terent’ev
, and
I. D.
Yaroshetskii
, “
Photon-drag photodetectors for the far-IR and submillimeter regions
,”
Pis’ma Zh. Tekh. Fiz.
11
,
46
(
1985
) [Sov. Tech. Phys. Lett. 11, 20 (1989)].
52.
We also note that the structure is excited by just a small fraction of the beam power P, being defined by the ratio R of the size of the structure and the beam area, R 10 5.
53.
S.
Hubmann
,
S.
Gebert
,
G. V.
Budkin
,
V. V.
Bel’kov
,
E. L.
Ivchenko
,
A. P.
Dmitriev
,
S.
Baumann
,
M.
Otteneder
,
J.
Ziegler
,
D.
Disterheft
,
D. A.
Kozlov
,
N. N.
Mikhailov
,
S. A.
Dvoretsky
,
Z. D.
Kvon
,
D.
Weiss
, and
S. D.
Ganichev
, “
High-frequency impact ionization and nonlinearity of photocurrent induced by intense terahertz radiation in HgTe-based quantum well structures
,”
Phys. Rev. B
99
,
085312
(
2019
).
54.
S.
Candussio
,
L. E.
Golub
,
S.
Bernreuter
,
T.
Jötten
,
T.
Rockinger
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Eroms
,
D.
Weiss
, and
S. D.
Ganichev
, “
Nonlinear intensity dependence of edge photocurrents in graphene induced by terahertz radiation
,”
Phys. Rev. B
104
,
155404
(
2021
).
55.
B. E. A.
Saleh
and
M. C.
Teich
,
Fundamentals of Photonics
(
John Wiley & Sons, Inc.
,
1991
).
56.
V. V.
Bel’kov
,
S. D.
Ganichev
,
E. L.
Ivchenko
,
S. A.
Tarasenko
,
W.
Weber
,
S.
Giglberger
,
M.
Olteanu
,
H. P.
Tranitz
,
S. N.
Danilov
,
P.
Schneider
,
W.
Wegscheider
,
D.
Weiss
, and
W.
Prettl
, “
Magneto-gyrotropic photogalvanic effects in semiconductor quantum wells
,”
J. Phys.: Condens. Matter
17
,
3405
(
2005
).
57.
E. V.
Castro
,
K. S.
Novoselov
,
S. V.
Morozov
,
N. M. R.
Peres
,
J. M. B.
Lopes dos Santos
,
J.
Nilsson
,
F.
Guinea
,
A. K.
Geim
, and
A. H.
Castro Neto
, “
Electronic properties of a biased graphene bilayer
,”
J. Phys.: Condens. Matter
22
,
175503
(
2010
).
58.
J. B.
Oostinga
,
H. B.
Heersche
,
X.
Liu
,
A. F.
Morpurgo
, and
L. M. K.
Vandersypen
, “
Gate-induced insulating state in bilayer graphene devices
,”
Nat. Mater.
7
,
151
157
(
2007
).
59.
At low temperatures and close to the CNP, direct interband optical transitions may also contribute to the ratchet current.
60.
Note that the room temperature responsivity of our unbiased device at f = 1.07 THz, which is about 70  μA W 1, is comparable to those reported in Ref. 1 for biased devices and f = 0.95 THz. The latter ranges from 10 to 300  μA W 1 depending on the source–drain current.
61.
N.
Xin
,
J.
Lourembam
,
P.
Kumaravadivel
,
A. E.
Kazantsev
,
Z. W. C.
Mullan
,
J.
Barrier
,
A. A.
Geim
,
I. V.
Grigorieva
,
A.
Mishchenko
,
A.
Principi
,
V. I.
Fal’ko
,
L. A.
Ponomarenko
,
A. K.
Geim
, and
A. I.
Berdyugin
, “
Giant magnetoresistance of dirac plasma in high-mobility graphene
,”
Nature
616
,
270
274
(
2023
).
62.
Z.
Mics
,
K.-J.
Tielrooij
,
K.
Parvez
,
S. A.
Jensen
,
I.
Ivanov
,
X.
Feng
,
K.
Müllen
,
M.
Bonn
, and
D.
Turchinovich
, “
Thermodynamic picture of ultrafast charge transport in graphene
,”
Nat. Commun.
6
,
7655
(
2015
).
63.
S.
Hubmann
,
P.
Soul
,
G.
Di Battista
,
M.
Hild
,
K.
Watanabe
,
T.
Taniguchi
,
D. K.
Efetov
, and
S. D.
Ganichev
, “
Nonlinear intensity dependence of photogalvanics and photoconductance induced by terahertz laser radiation in twisted bilayer graphene close to magic angle
,”
Phys. Rev. Mater.
6
,
024003
(
2022
).
64.
A. V.
Nalitov
,
L. E.
Golub
, and
E. L.
Ivchenko
, “
Ratchet effects in two-dimensional systems with a lateral periodic potential
,”
Phys. Rev. B
86
,
115301
(
2012
).
65.
M.
Monteverde
,
C.
Ojeda-Aristizabal
,
R.
Weil
,
K.
Bennaceur
,
M.
Ferrier
,
S.
Guéron
,
C.
Glattli
,
H.
Bouchiat
,
J. N.
Fuchs
, and
D. L.
Maslov
, “
Transport and elastic scattering times as probes of the nature of impurity scattering in single-layer and bilayer graphene
,”
Phys. Rev. Lett.
104
,
126801
(
2010
).
66.
S. O.
Woo
,
I.
Yudhistira
,
S.
Hemmatiyan
,
T. D.
Morrison
,
K. D. D.
Rathnayaka
, and
D. G.
Naugle
, “
Transport properties of bilayer graphene decorated by K adatoms in the framework of Thomas-Fermi screening
,”
Phys. Rev. B
99
,
085416
(
2019
).
67.
A.
Avsar
,
I. J.
Vera-Marun
,
J. Y.
Tan
,
G. K. W.
Koon
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Adam
, and
B.
Özyilmaz
, “
Electronic spin transport in dual-gated bilayer graphene
,”
NPG Asia Mater.
8
,
e274
(
2016
).
68.
X.
Li
,
K. M.
Borysenko
,
M.
Buongiorno Nardelli
, and
K. W.
Kim
, “
Electron transport properties of bilayer graphene
,”
Phys. Rev. B
84
,
195453
(
2011
).
You do not currently have access to this content.