Standard thermoreflectance-based measurements have been routinely taken on thin metal transducer (Au or Al) deposited samples. This is based on the fundamental hypothesis that the reflectance change (ΔR/R) of the metal surface is directly and linearly related to the temperature change (ΔT), within a wide but finite temperature range (Trange). The quantitative study on Trange has been ignored for a long time, which would possibly cause severe measurement issues and impede the possible new applications that the thermoreflectance measurements are taken on new metals or even directly on non-metals. Here, we present an approach that combines multiple probe wavelengths’ nanosecond transient thermoreflectance technique with a transient temperature rise model to study the linear relation. This method enables fast and accurate determination of the Trange and the proportional coefficient (commonly called the thermoreflectance coefficient, Cth). We studied the commonly used metal transducers (Au and Al) and found that Au illuminated at 532 nm has a considerably larger Trange (from room T to at least 225 °C), with respect to Al illuminated at 785 nm (room T to 150 °C). The linear relationships of uncommon Ni and Ti metals are valid from room temperature to ∼115 °C, illuminated at 785 and 660 nm, respectively. Non-linearity was observed for Al, Ni, and Ti metals when the temperature was elevated above the quantified Trange. This method enables a facile and reliable platform to characterize thermoreflectance properties and better understand the mechanism of thermoreflectance linear relationship.

1.
C.
Yuan
,
R.
Hanus
, and
S.
Graham
, “
A review of thermoreflectance techniques for characterizing wide bandgap semiconductors’ thermal properties and devices’ temperatures
,”
J. Appl. Phys.
132
(
22
),
220701
(
2022
).
2.
C.
Yuan
,
J. W.
Pomeroy
, and
M.
Kuball
, “
Above bandgap thermoreflectance for non-invasive thermal characterization of GaN-based wafers
,”
Appl. Phys. Lett.
113
(
10
),
102101
(
2018
).
3.
R. B.
Wilson
and
D. G.
Cahill
, “
Limits to Fourier theory in high thermal conductivity single crystals
,”
Appl. Phys. Lett.
107
(
20
),
203112
(
2015
).
4.
D. H.
Olson
,
J. L.
Braun
, and
P. E.
Hopkins
, “
Spatially resolved thermoreflectance techniques for thermal conductivity measurements from the nanoscale to the mesoscale
,”
J. Appl. Phys.
126
(
15
),
150901
(
2019
).
5.
D. G.
Cahill
, “
Analysis of heat flow in layered structures for time-domain thermoreflectance
,”
Rev. Sci. Instrum.
75
(
12
),
5119
5122
(
2004
).
6.
J.
Zhu
,
D.
Tang
,
W.
Wang
,
J.
Liu
,
K. W.
Holub
, and
R.
Yang
, “
Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films
,”
J. Appl. Phys.
108
(
9
),
094315
(
2010
).
7.
T. L.
Bougher
,
L.
Yates
,
C.-F.
Lo
,
W.
Johnson
,
S.
Graham
, and
B. A.
Cola
, “
Thermal boundary resistance in GaN films measured by time domain thermoreflectance with robust Monte Carlo uncertainty estimation
,”
Nanoscale Microscale Thermophys. Eng.
20
(
1
),
22
32
(
2016
).
8.
K.
Kang
,
Y. K.
Koh
,
C.
Chiritescu
,
X.
Zheng
, and
D. G.
Cahill
, “
Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters
,”
Rev. Sci. Instrum.
79
(
11
),
114901
(
2008
).
9.
A. J.
Schmidt
,
R.
Cheaito
, and
M.
Chiesa
, “
A frequency-domain thermoreflectance method for the characterization of thermal properties
,”
Rev. Sci. Instrum.
80
(
9
),
094901
(
2009
).
10.
A. J.
Schmidt
,
R.
Cheaito
, and
M.
Chiesa
, “
Characterization of thin metal films via frequency-domain thermoreflectance
,”
J. Appl. Phys.
107
(
2
),
024908
(
2010
).
11.
M. N.
Touzelbaev
,
P.
Zhou
,
R.
Venkatasubramanian
, and
K. E.
Goodson
, “
Thermal characterization of Bi2Te3/Sb2Te3 superlattices
,”
J. Appl. Phys.
90
(
2
),
763
767
(
2001
).
12.
R.
Garrelts
,
A.
Marconnet
, and
X.
Xu
, “
Assessment of thermal properties via nanosecond thermoreflectance method
,”
Nanoscale Microscale Thermophys. Eng.
19
(
4
),
245
257
(
2015
).
13.
J.
Jeong
,
X.
Meng
,
A. K.
Rockwell
,
S. R.
Bank
,
W.-P.
Hsieh
,
J.-F.
Lin
, and
Y.
Wang
, “
Picosecond transient thermoreflectance for thermal conductivity characterization
,”
Nanoscale Microscale Thermophys. Eng.
23
(
3
),
211
221
(
2019
).
14.
J. L.
Braun
,
D. H.
Olson
,
J. T.
Gaskins
, and
P. E.
Hopkins
, “
A steady-state thermoreflectance method to measure thermal conductivity
,”
Rev. Sci. Instrum.
90
(
2
),
024905
(
2019
).
15.
M. S. B.
Hoque
,
Y. R.
Koh
,
J. L.
Braun
,
A.
Mamun
,
Z.
Liu
,
K.
Huynh
,
M. E.
Liao
,
K.
Hussain
,
Z.
Cheng
,
E. R.
Hoglund
,
D. H.
Olson
,
J. A.
Tomko
,
K.
Aryana
,
R.
Galib
,
J. T.
Gaskins
,
M. M. M.
Elahi
,
Z. C.
Leseman
,
J. M.
Howe
,
T.
Luo
,
S.
Graham
,
M. S.
Goorsky
,
A.
Khan
, and
P. E.
Hopkins
, “
High in-plane thermal conductivity of aluminum nitride thin films
,”
ACS Nano
15
(
6
),
9588
9599
(
2021
).
16.
M. S. B.
Hoque
,
Y. R.
Koh
,
K.
Aryana
,
E. R.
Hoglund
,
J. L.
Braun
,
D. H.
Olson
,
J. T.
Gaskins
,
H.
Ahmad
,
M. M. M.
Elahi
,
J. K.
Hite
,
Z. C.
Leseman
,
W. A.
Doolittle
, and
P. E.
Hopkins
, “
Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance
,”
Rev. Sci. Instrum.
92
(
6
),
064906
(
2021
).
17.
G.
Tessier
,
S.
Holé
, and
D.
Fournier
, “
Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths
,”
Appl. Phys. Lett.
78
(
16
),
2267
2269
(
2001
).
18.
J.
Christofferson
and
A.
Shakouri
, “
Thermoreflectance based thermal microscope
,”
Rev. Sci. Instrum.
76
(
2
),
024903
(
2005
).
19.
A. E.
Helou
,
P.
Komarov
,
M. J.
Tadjer
,
T. J.
Anderson
,
D. A.
Francis
,
T.
Feygelson
,
B. B.
Pate
,
K. D.
Hobart
, and
P. E.
Raad
, “
High-resolution thermoreflectance imaging investigation of self-heating in AlGaN/GaN HEMTs on Si, SiC, and diamond substrates
,”
IEEE Trans. Electron Devices
67
(
12
),
5415
5420
(
2020
).
20.
E.
Ziade
,
J.
Yang
,
G.
Brummer
,
D.
Nothern
,
T.
Moustakas
, and
A. J.
Schmidt
, “
Thermal transport through GaN-SiC interfaces from 300 to 600 K
,”
Appl. Phys. Lett.
107
(
9
),
091605
(
2015
).
21.
W. M.
Waller
,
J. W.
Pomeroy
,
D.
Field
,
E. J. W.
Smith
,
P. W.
May
, and
M.
Kuball
, “
Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond
,”
Semicond. Sci. Technol.
35
(
9
),
095021
(
2020
).
22.
B. F.
Donovan
,
C. J.
Szwejkowski
,
J. C.
Duda
,
R.
Cheaito
,
J. T.
Gaskins
,
C.-Y. P.
Yang
,
C.
Constantin
,
R. E.
Jones
, and
P. E.
Hopkins
, “
Thermal boundary conductance across metal-gallium nitride interfaces from 80 to 450 K
,”
Appl. Phys. Lett.
105
(
20
),
203502
(
2014
).
23.
M.
Blank
,
G.
Schneider
,
J.
Ordonez-Miranda
, and
L.
Weber
, “
Role of the electron-phonon coupling on the thermal boundary conductance of metal/diamond interfaces with nanometric interlayers
,”
J. Appl. Phys.
126
(
16
),
165302
(
2019
).
24.
J.
Cho
,
Y.
Li
,
W. E.
Hoke
,
D. H.
Altman
,
M.
Asheghi
, and
K. E.
Goodson
, “
Phonon scattering in strained transition layers for GaN heteroepitaxy
,”
Phys. Rev. B
89
(
11
),
115301
(
2014
).
25.
J.
Cho
,
D.
Francis
,
D. H.
Altman
,
M.
Asheghi
, and
K. E.
Goodson
, “
Phonon conduction in GaN-diamond composite substrates
,”
J. Appl. Phys.
121
(
5
),
055105
(
2017
).
26.
F.
Mu
,
Z.
Cheng
,
J.
Shi
,
S.
Shin
,
B.
Xu
,
J.
Shiomi
,
S.
Graham
, and
T.
Suga
, “
High thermal boundary conductance across bonded heterogeneous GaN-SiC interfaces
,”
ACS Appl. Mater. Interfaces
11
(
36
),
33428
33434
(
2019
).
27.
P.
Jiang
,
X.
Qian
, and
R.
Yang
, “
Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials
,”
J. Appl. Phys.
124
(
16
),
161103
(
2018
).
28.
R.
Rosei
and
D. W.
Lynch
, “
Thermomodulation spectra of Al, Au, and Cu
,”
Phys. Rev. B
5
(
10
),
3883
3894
(
1972
).
29.
P.
Jiang
and
H.
Ban
, “
Transient and steady-state temperature rise in three-dimensional anisotropic layered structures in pump-probe thermoreflectance experiments
,”
J. Phys. D: Appl. Phys.
54
(
3
),
035304
(
2021
).
30.
J. P.
Feser
,
J.
Liu
, and
D. G.
Cahill
, “
Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry
,”
Rev. Sci. Instrum.
85
(
10
),
104903
(
2014
).
31.
C. M.
Rost
,
J.
Braun
,
K.
Ferri
,
L.
Backman
,
A.
Giri
,
E. J.
Opila
,
J.-P.
Maria
, and
P. E.
Hopkins
, “
Hafnium nitride films for thermoreflectance transducers at high temperatures: Potential based on heating from laser absorption
,”
Appl. Phys. Lett.
111
(
15
),
151902
(
2017
).
32.
L.
Wang
,
R.
Cheaito
,
J. L.
Braun
,
A.
Giri
, and
P. E.
Hopkins
, “
Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer
,”
Rev. Sci. Instrum.
87
(
9
),
094902
(
2016
).
33.
C.
Yuan
,
B.
Meng
,
Y.
Mao
,
M.
Wu
,
F.
Jia
,
L.
Yang
,
X.
Ma
, and
Y.
Hao
, “
Transducer-less thermoreflectance technique for measuring thermal properties of the buried buffer layer and interface in GaN-based HEMTs
,”
ACS Appl. Electron. Mater.
4
(
12
),
5984
5995
(
2022
).
34.
X.
Qian
,
Z.
Ding
,
J.
Shin
,
A. J.
Schmidt
, and
G.
Chen
, “
Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance
,”
Rev. Sci. Instrum.
91
(
6
),
064903
(
2020
).
35.
S.
Warkander
and
J.
Wu
, “
Transducerless time domain reflectance measurement of semiconductor thermal properties
,”
J. Appl. Phys.
131
(
2
),
025101
(
2022
).
36.
G.
Pavlidis
,
D.
Kendig
,
L.
Yates
, and
S.
Graham
, in
Proceedings of the 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm 2018)
(
IEEE
,
New York
,
2018
), pp.
208
213
.
37.
D.
Pierscinska
,
K.
Pierscinski
,
M.
Pluska
,
L.
Marona
,
P.
Wisniewski
,
P.
Perlin
, and
M.
Bugajski
, “
Examination of thermal properties and degradation of InGaN-based diode lasers by thermoreflectance spectroscopy and focused ion beam etching
,”
AIP Adv.
7
(
7
),
075107
(
2017
).
38.
G.
Pavlidis
,
L.
Yates
,
D.
Kendig
,
C.-F.
Lo
,
H.
Marchand
,
B.
Barabadi
, and
S.
Graham
, “
Thermal performance of GaN/Si HEMTs using near-bandgap thermoreflectance imaging
,”
IEEE Trans. Electron Devices
67
(
3
),
822
827
(
2020
).
39.
H.
Wang
,
C.
Yuan
,
Y.
Xin
,
Y.
Shi
,
Y.
Zhong
,
Y.
Huang
, and
G.
Lu
, “
Investigation on the thermal characteristics of enhancement-mode p-GaN HEMT device on Si substrate using thermoreflectance microscopy
,”
Micromachines
13
(
3
),
466
(
2022
).
40.
D.
Kendig
,
A.
Tay
, and
A.
Shakouri
, in
2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)
(IEEE,
2016
), pp.
115
120
.
41.
K.
Yazawa
,
M. D.
Kendig
, and
A.
Shakouri
, in
39th International Symposium for Testing and Failure Analysis American Society for Metals
(ASM International,
2013
).
42.
M. J.
Tadjer
,
P. E.
Raad
,
P. L.
Komarov
,
K. D.
Hobart
,
T.
Feygelson
,
A. D.
Koehler
,
T. J.
Anderson
,
A.
Nath
,
B.
Pate
, and
F. J.
Kub
, “
Electrothermal evaluation of AlGaN/GaN membrane high electron mobility transistors by transient thermoreflectance
,”
IEEE J. Electron Devices Soc.
6
(
1
),
922
930
(
2018
).
43.
T.
Favaloro
,
J.-H.
Bahk
, and
A.
Shakouri
, “
Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films
,”
Rev. Sci. Instrum.
86
(
2
),
024903
(
2015
).
44.
R. B.
Wilson
,
B. A.
Apgar
,
L. W.
Martin
, and
D. G.
Cahill
, “
Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties
,”
Opt. Express
20
(
27
),
28829
28838
(
2012
).
45.
Y.
Wang
,
J. Y.
Park
,
Y. K.
Koh
, and
D. G.
Cahill
, “
Thermoreflectance of metal transducers for time-domain thermoreflectance
,”
J. Appl. Phys.
108
(
4
),
043507
(
2010
).
46.
W.-P.
Hsieh
and
D. G.
Cahill
, “
Ta and Au(Pd) alloy metal film transducers for time-domain thermoreflectance at high pressures
,”
J. Appl. Phys.
109
(
11
),
113520
(
2011
).
47.
Y.
Yao
,
R. F.
Davis
, and
L. M.
Porter
, “
Investigation of different metals as ohmic contacts to β-Ga2O3: Comparison and analysis of electrical behavior, morphology, and other physical properties
,”
J. Electron. Mater.
46
(
4
),
2053
2060
(
2017
).
48.
Y.
Yao
,
R.
Gangireddy
,
J.
Kim
,
K. K.
Das
,
R. F.
Davis
, and
L. M.
Porter
, “
Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals
,”
J. Vac. Sci. Technol. B
35
(
3
),
03D113
(
2017
).
49.
J.
Shi
,
C.
Yuan
,
H.-L.
Huang
,
J.
Johnson
,
C.
Chae
,
S.
Wang
,
R.
Hanus
,
S.
Kim
,
Z.
Cheng
,
J.
Hwang
, and
S.
Graham
, “
Thermal transport across metal/β-Ga2O3 interfaces
,”
ACS Appl. Mater. Interfaces
13
(
24
),
29083
29091
(
2021
).
50.
Y.
Mao
,
B.
Meng
,
Z.
Qin
,
B.
Gao
, and
C.
Yuan
, “
Device-level thermal analysis for gallium oxide lateral field-effect transistor
,”
IEEE Trans. Electron Devices
70
(
3
),
953
958
(
2023
).
51.
H. T.
Aller
,
X.
Yu
,
A.
Wise
,
R. S.
Howell
,
A. J.
Gellman
,
A. J. H.
McGaughey
, and
J. A.
Malen
, “
Chemical reactions impede thermal transport across metal/β-Ga2O3 interfaces
,”
Nano Lett.
19
(
12
),
8533
8538
(
2019
).
52.
X.
Li
,
W.
Park
,
Y.
Wang
,
Y. P.
Chen
, and
X.
Ruan
, “
Reducing interfacial thermal resistance between metal and dielectric materials by a metal interlayer
,”
J. Appl. Phys.
125
(
4
),
045302
(
2019
).
53.
H. T.
Aller
,
J. A.
Malen
, and
A. J. H.
McGaughey
, “
Universal model for predicting the thermal boundary conductance of a multilayered-metal–dielectric interface
,”
Phys. Rev. Appl.
15
(
6
),
064043
(
2021
).
54.
M.
Blank
and
L.
Weber
, “
Influence of the thickness of a nanometric copper interlayer on Au/dielectric thermal boundary conductance
,”
J. Appl. Phys.
124
(
10
),
105304
(
2018
).
55.
M.
Jeong
,
J. P.
Freedman
,
H. J.
Liang
,
C.-M.
Chow
,
V. M.
Sokalski
,
J. A.
Bain
, and
J. A.
Malen
, “
Enhancement of thermal conductance at metal-dielectric interfaces using subnanometer metal adhesion layers
,”
Phys. Rev. Appl.
5
(
1
),
014009
(
2016
).
56.
P.
Jiang
,
D.
Wang
,
Z.
Xiang
,
R.
Yang
, and
H.
Ban
, “
A new spatial-domain thermoreflectance method to measure a broad range of anisotropic in-plane thermal conductivity
,”
Int. J. Heat Mass Transf.
191
,
122849
(
2022
).
57.
C.
Yuan
,
W. M.
Waller
, and
M.
Kuball
, “
Nanosecond transient thermoreflectance method for characterizing anisotropic thermal conductivity
,”
Rev. Sci. Instrum.
90
(
11
),
114903
(
2019
).
58.
P.
Hui
and
H. S.
Tan
, “
A transmission-line theory for heat conduction in multilayer thin films
,”
IEEE Trans. Comput. Packag. Manufact. Technol. B
17
(
3
),
426
434
(
1994
).
59.
G.
Chen
and
P.
Hui
, “
Pulsed photothermal modeling of composite samples based on transmission-line theory of heat conduction
,”
Thin Solid Films
339
(
1–2
),
58
67
(
1999
).
60.
R.
Brandt
and
G.
Neuer
, “
Electrical resistivity and thermal conductivity of pure aluminum and aluminum alloys up to and above the melting temperature
,”
Int. J. Thermophys.
28
(
5
),
1429
1446
(
2007
).
61.
C.
Yuan
,
J.
Li
,
L.
Lindsay
,
D.
Cherns
,
J. W.
Pomeroy
,
S.
Liu
,
J. H.
Edgar
, and
M.
Kuball
, “
Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration
,”
Commun. Phys.
2
,
43
(
2019
).
62.
L.
Farbaniec
and
D. E.
Eakins
, “
Thermoreflectance-based approach for surface temperature measurements of thin-film gold sensors
,”
Rev. Sci. Instrum.
94
(
3
),
034902
(
2023
).
63.
J.
Hrbek
, “
Induction heating of thin nonmagnetic sheets in transverse time-variable magnetic field
,”
Acta Tech. CSAV (Ceskoslovensk Akademie Ved)
60
,
15
29
(
2015
).
64.
Z. L.
Jin
,
H. S.
Fang
,
N.
Yang
,
Z.
Zhang
,
S.
Wang
, and
J. F.
Xu
, “
Influence of temperature-dependent thermophysical properties of sapphire on the modeling of Kyropoulos cooling process
,”
J. Cryst. Growth
405
,
52
58
(
2014
).
65.
B.
Feng
,
Z.
Li
, and
X.
Zhang
, “
Prediction of size effect on thermal conductivity of nanoscale metallic films
,”
Thin Solid Films
517
(
8
),
2803
2807
(
2009
).
66.
Y.
Takahashi
and
H.
Akiyama
, “
Heat-capacity of gold from 80-K to 1000-K
,”
Thermochim. Acta
109
(
1
),
105
109
(
1986
).
67.
P.
Meschter
,
J.
Wright
,
C.
Brooks
, and
T.
Kollie
, “
Physical contributions to the heat-capacity of nickel
,”
J. Phys. Chem. Solids
42
(
9
),
861
871
(
1981
).
68.
R. W.
Powell
,
R. P.
Tye
, and
M. J.
Hickman
, “
The thermal conductivity of nickel
,”
Int. J. Heat Mass Transfer
8
(
5
),
679
688
(
1965
).
69.
K. D.
Maglic
and
D. Z.
Pavicic
, “
Thermal and electrical properties of titanium between 300 and 1900 K
,”
Int. J. Thermophys.
22
(
6
),
1833
1841
(
2001
).
70.
D. G.
Cahill
, “
Thermal conductivity measurement from 30 to 750 K: The 3ω method
,”
Rev. Sci. Instrum.
61
(
2
),
802
808
(
1990
).
71.
S.
Alajlouni
,
D. A.
Lara Ramos
,
K.
Maize
,
N.
Perez
,
K.
Nielsch
,
G.
Schierning
, and
A.
Shakouri
, “
Estimating thin-film thermal conductivity by optical pump thermoreflectance imaging and finite element analysis
,”
J. Appl. Phys.
131
(
18
),
185111
(
2022
).
72.
J. L.
Braun
and
P. E.
Hopkins
, “
Upper limit to the thermal penetration depth during modulated heating of multilayer thin films with pulsed and continuous wave lasers: A numerical study
,”
J. Appl. Phys.
121
(
17
),
175107
(
2017
).

Supplementary Material

You do not currently have access to this content.