Pesticide-free agricultural strategies need new tools for disease prevention. Better than early detection of disease, detection of conditions favorable to their appearance can be a progress. In the case of fungal diseases, the presence of water on the plant surface is necessary. In order to detect remotely this presence early and at the scale of a crop field, we propose a low-cost solution based on laser reflection. Here, experimental results in a controlled environment are presented on both hydrophobic and hydrophilic leaves (rapeseed Brassica Napus and grapevine Vitis Vinifera, respectively). We first assess the water detection on a leaf surface by recreating the dew formation process. We next evaluate the influence of the scanning measurement and leaf inclination on the detection to get closer to in-field conditions. Results show that this method is very sensitive on both types of leaves. Water detection is possible from a low surface coverage with a high temporal precision at 1 m. In the hydrophobic case, water on a leaf surface leads to an increase of the detected signal up to three times compared to a dry leaf. The corresponding minimum surface coverage detectable at 1 m is evaluated at 1.6% thanks to 2D ray-tracing numerical simulations. In the hydrophilic case, on the contrary, water on a leaf surface leads to a decrease of the detected signal by almost half. For both types, the dew detection delay is contained under 5 min and can be improved. Finally, the presented results pave the way to a field application.

1.
M. C.
Fisher
,
D. A.
Henk
,
C. J.
Briggs
,
J. S.
Brownstein
,
L. C.
Madoff
,
S. L.
McCraw
, and
S. J.
Gurr
, “
Emerging fungal threats to animal, plant and ecosystem health
,”
Nature
484
(
7393
),
186
194
(
2012
).
2.
FAO, World Food and Agriculture—Statistical Yearbook 2021 (FAO, 2021).
3.
P. K.
Gupta
,
R. R.
Mir
,
A.
Mohan
, and
J.
Kumar
, “
Wheat genomics: Present status and future prospects
,”
Int. J. Plant Genomics
2008
, 896451.
4.
H.
Fones
and
S.
Gurr
, “
The impact of Septoria tritici blotch disease on wheat: An EU perspective
,”
Fungal Genet. Biol.
79
,
3
7
(
2015
).
5.
A.
Calonnec
,
P.
Cartolaro
,
C.
Poupot
,
D.
Dubourdieu
, and
P.
Darriet
, “
Effects of Uncinula necator on the yield and quality of grapes (Vitis vinifera) and wine
,”
Plant Pathol.
53
(
4
),
434
445
(
2004
).
6.
E. S.
Scott
,
R. G.
Dambergs
, and
B. E.
Stummer
, “Fungal contaminants in the vineyard and wine quality,” in Managing Wine Quality (Elsevier, 2010), pp. 481–514.
7.
N. V.
Hardwick
,
B. D. L.
Fitt
,
S. J.
Wale
,
J. B.
Sweet
et al., “Oilseed rape diseases,” Review No. OS4, 1991.
8.
H. A.
McCartney
,
K. J.
Doughty
,
G.
Norton
,
E. J.
Booth
,
S. P. J.
Kightley
,
G.
Landon
,
G.
West
,
K. C.
Walker
, and
J. E.
Thomas
, “A study of the effect of disease on seed quality parameters of oilseed rape,” in Proceedings of the 10th International Rapeseed Congress, CD-ROM (The Regional Institute Limited, Canberra, Australia, 1999).
9.
B.
Butkute
,
G.
Šidlauskas
, and
I.
Brazauskiene
, “
Seed yield and quality of winter oilseed rape as affected by nitrogen rates, sowing time, and fungicide application
,”
Commun. Soil Sci. Plant Anal.
37
(
15–20
),
2725
2744
(
2006
).
10.
F.
Almeida
,
M. L.
Rodrigues
, and
C.
Coelho
, “
The still underestimated problem of fungal diseases worldwide
,”
Front. Microbiol.
10
,
214
(
2019
).
11.
M. C. R.
Alavanja
,
J. A.
Hoppin
, and
F.
Kamel
, “
Health effects of chronic pesticide exposure: Cancer and neurotoxicity
,”
Annu. Rev. Public Health
25
(
1
),
155
197
(
2004
).
12.
D.
Provost
,
A.
Cantagrel
,
P.
Lebailly
,
A.
Jaffré
,
V.
Loyant
,
H.
Loiseau
,
A.
Vital
,
P.
Brochard
, and
I.
Baldi
, “
Brain tumours and exposure to pesticides: A case–control study in southwestern France
,”
Occup. Environ. Med.
64
(
8
),
509
514
(
2007
).
13.
M.
Ye
,
J.
Beach
,
J. W.
Martin
, and
A.
Senthilselvan
, “
Pesticide exposures and respiratory health in general populations
,”
J. Environ. Sci.
51
,
361
370
(
2017
).
14.
D.
Laurino
,
A.
Manino
,
A.
Patetta
, and
M.
Porporato
, “
Toxicity of neonicotinoid insecticides on different honey bee genotypes
,”
Bull. Insectology
66
(
1
),
119
–126 (
2013
).
15.
M.
Tudi
,
H. D.
Ruan
,
L.
Wang
,
J.
Lyu
,
R.
Sadler
,
D.
Connell
,
C.
Chu
, and
D. T.
Phung
, “
Agriculture development, pesticide application and its impact on the environment
,”
Int. J. Environ. Res. Public Health
18
(
3
),
1112
(
2021
).
16.
Fungicide Resistance in Plant Pathogens, edited by H. Ishii and D. W. Hollomon (Springer Japan, 2015).
17.
J. R.
Rohr
,
J.
Brown
,
W. A.
Battaglin
,
T. A.
McMahon
, and
R. A.
Relyea
, “
A pesticide paradox: Fungicides indirectly increase fungal infections
,”
Ecol. Appl.
27
(
8
),
2290
2302
(
2017
).
18.
K. R.
Gavhale
and
U.
Gawande
, “
An overview of the research on plant leaves disease detection using image processing techniques
,”
IOSR J. Comput. Eng.
16
(
1
),
10
16
(
2014
).
19.
S.
Arivazhagan
,
R.
Newlin Shebiah
,
S.
Ananthi
, and
S.
Vishnu Varthini
, “
Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features
,”
Agric. Eng. Int.: CIGR J.
15
(
1
),
211
217
(
2013
).
20.
T.
Rumpf
,
A.-K.
Mahlein
,
U.
Steiner
,
E.-C.
Oerke
,
H.-W.
Dehne
, and
L.
Plümer
, “
Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance
,”
Comput. Electron. Agric.
74
(
1
),
91
99
(
2010
).
21.
V.
Lacotte
,
S.
Peignier
,
M.
Raynal
,
I.
Demeaux
,
F.
Delmotte
, and
P.
da Silva
, “
Spatial–spectral analysis of hyperspectral images reveals early detection of downy mildew on grapevine leaves
,”
Int. J. Mol. Sci.
23
(
17
),
10012
(
2022
).
22.
G.
Hornero
,
J. E.
Gaitán-Pitre
,
E.
Serrano-Finetti
,
O.
Casas
, and
R.
Pallas-Areny
, “
A novel low-cost smart leaf wetness sensor
,”
Comput. Electron. Agric.
143
,
286
292
(
2017
).
23.
K. S.
Patle
,
B.
Dehingia
,
H.
Kalita
, and
V. S.
Palaparthy
, “
Highly sensitive graphene oxide leaf wetness sensor for disease supervision on medicinal plants
,”
Comput. Electron. Agric.
200
,
107225
(
2022
).
24.
L.
Zhu
,
Z.
Cao
,
W.
Zhuo
,
R.
Yan
, and
S.
Ma
, “
A new dew and frost detection sensor based on computer vision
,”
J. Atmos. Ocean. Technol.
31
(
12
),
2692
2712
(
2014
).
25.
B. G.
Heusinkveld
,
S. M.
Berkowicz
,
A. F. G.
Jacobs
,
W.
Hillen
, and
A. A. M.
Holtslag
, “
A new remote optical wetness sensor and its applications
,”
Agric. For. Meteorol.
148
(
4
),
580
591
(
2008
).
26.
V. S.
Nikolayev
,
P.
Sibille
, and
D. A.
Beysens
, “
Coherent light transmission by a dew pattern
,”
Opt. Commun.
150
(
1–6
),
263
269
(
1998
).
27.
R. M.
Schotland
,
K.
Sassen
, and
R.
Stone
, “
Observations by lidar of linear depolarization ratios for hydrometeors
,”
J. Appl. Meteorol.
10
(
5
),
1011
1017
(
1971
).
28.
L.
Lasyk
,
M.
Lukomski
, and
L.
Bratasz
, “
Simple digital speckle pattern interferometer (DSPI) for investigation of art objects
,”
Opt. Appl.
XLI
(3), 687–700 (
2011
).
29.
M. R.
Riahi
,
H.
Latifi
, and
M.
Sajjadi
, “
Speckle correlation photography for the study of water content and sap flow in plant leaves
,”
Appl. Opt.
45
(
29
),
7674
7678
(
2006
).
30.
J. O.
Mattsson
and
C.
Cavallin
, “
Retroreflection of light from drop-covered surfaces and an image-producing device for registration of this light
,”
Oikos
23
(
3
),
285
(
1972
).
31.
Y.
He
,
S.
Xiao
,
J.
Wu
, and
H.
Fang
, “
Influence of multiple factors on the wettability and surface free energy of leaf surface
,”
Appl. Sci.
9
(
3
),
593
(
2019
).
32.
C.
Konlechner
and
U.
Sauer
, “
Ultrastructural leave features of grapevine cultivars (Vitis vinifera L. ssp. vinifera)
,”
OENO One
50
(
4
),
195
–207 (
2016
).
33.
D.
Beysens
,
Dew Water
(
River Publishers
,
2018
).
34.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley-VCH
,
2004
).
35.
J. O.
Mattsson
and
L.
Bärring
, “
Heiligenschein and related phenomena in divergent light
,”
Appl. Opt.
40
(
27
),
4799
(
2001
).
36.
A.
Leigh
,
S.
Sevanto
,
J. D.
Close
, and
A. B.
Nicotra
, “
The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions?
,”
Plant Cell Environ.
40
(
2
),
237
248
(
2017
).
37.
W. W.
Cure
,
R. B.
Flagler
, and
A. S.
Heagle
, “
Correlations between canopy reflectance and leaf temperature in irrigated and droughted soybeans
,”
Remote Sens. Environ.
29
(
3
),
273
280
(
1989
).
38.
V.
Silva-Perez
,
G.
Molero
,
S. P.
Serbin
,
A. G.
Condon
,
M. P.
Reynolds
,
R. T.
Furbank
, and
J. R.
Evans
, “
Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat
,”
J. Exp. Bot.
69
(
3
),
483
496
(
2018
).
39.
G.
Bonan
, “Leaf temperature and energy fluxes,” in Climate Change and Terrestrial Ecosystem Modeling (Cambridge University Press, 2019), pp. 152–166.
40.
“Why Painting and Calibrating Your Leaf Wetness Sensor Won’t Work,” (2021); see https://www.metergroup.com/en/meter-environment/measurement-insights/why-painting-and-calibrating-your-leaf-wetness-sensor.
41.
Prevision-meteo.ch, Relevés horaires des observations météo de lyon / bron pour la journée du lundi 01 août 2022, 2022; see https://prevision-meteo.ch/climat/horaire/lyon-bron/2022-08-01.
42.
D.
Beysens
,
M.-A.
Marcos-Martin
,
P.
Sibille
, and
V.
Nikolayev
, “Method and device for characterising a modification in time of the state of condensation of droplets on a target,” World Patent WO1998012546 26.03.1998.
43.
S.
Jacquemoud
and
S.
Ustin
,
Leaf Optical Properties
,
1st ed.
(
Cambridge University Press
,
2019
).
44.
S.
Vafaei
and
M. Z.
Podowski
, “
Analysis of the relationship between liquid droplet size and contact angle
,”
Adv. Colloid Interface Sci.
113
(
2–3
),
133
146
(
2005
).
45.
J.
Park
,
H.-S.
Han
,
Y.-C.
Kim
,
J.-P.
Ahn
,
M.-R.
Ok
,
K. E.
Lee
,
J.-W.
Lee
,
P.-R.
Cha
,
H.-K.
Seok
, and
H.
Jeon
, “
Direct and accurate measurement of size dependent wetting behaviors for sessile water droplets
,”
Sci. Rep.
5
(
1
),
18150
(
2015
).
46.
S. Y.
Misyura
, “
Contact angle and droplet evaporation on the smooth and structured wall surface in a wide range of droplet diameters
,”
Appl. Therm. Eng.
113
,
472
480
(
2017
).
47.
D.
Beysens
, “
Estimating dew yield worldwide from a few meteo data
,”
Atmos. Res.
167
,
146
155
(
2016
).

Supplementary Material

You do not currently have access to this content.