Integrin mechanosensing plays an instrumental role in cell behavior, phenotype, and fate by transmitting mechanical signals that trigger downstream molecular and cellular changes. For instance, force transfer along key amino acid residues can mediate cell adhesion. Disrupting key binding sites within α 5 β 1 integrin’s binding partner, fibronectin (FN) diminishes adhesive strength. While past studies have shown the importance of these residues in cell adhesion, the relationship between the dynamics of these residues and how integrin distributes force across the cell surface remains less explored. Here, we present a multiscale mechanical model to investigate the mechanical coupling between integrin nanoscale dynamics and whole-cell adhesion mechanics. Our framework leverages molecular dynamics simulations to investigate residues within α 5 β 1-FN during stretching and the finite element method to visualize the whole-cell adhesion mechanics. The forces per integrin across the cell surface of the whole-cell model were consistent with past atomic force microscopy and Förster resonance energy transfer measurements from the literature. The molecular dynamics simulations also confirmed past studies that implicate two key sites within FN that maintain cell adhesion: the synergy site and arginine-glycine-aspartic acid (RGD) motif. Our study contributed to our understanding of molecular mechanisms by which these sites collaborate to mediate whole-cell integrin adhesion dynamics. Specifically, we showed how FN unfolding, residue binding/unbinding, and molecular structure contribute to α 5 β 1-FN’s nonlinear force–extension behavior during stretching. Our computational framework could be used to explain how the dynamics of key residues influence cell differentiation or how uniquely designed protein structures could dynamically limit the spread of metastatic cells.

1.
D. E.
Ingber
, “
Mechanosensation through integrins: Cells act locally but think globally
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
1472
1474
(
2003
).
2.
Z.
Jahed
,
H.
Shams
,
M.
Mehrbod
, and
M. R.
Mofrad
, “
Mechanotransduction pathways linking the extracellular matrix to the nucleus
,”
Int. Rev. Cell Mol. Biol.
310
,
171
220
(
2014
).
3.
J.
Zhu
,
C. V.
Carman
,
M.
Kim
,
M.
Shimaoka
,
T. A.
Springer
, and
B.-H.
Luo
, “
Requirement of α and β subunit transmembrane helix separation for integrin outside-in signaling
,”
Blood
110
,
2475
2483
(
2007
).
4.
P. E.
Hughes
,
F.
Diaz-Gonzalez
,
L.
Leong
,
C.
Wu
,
J. A.
McDonald
,
S. J.
Shattil
, and
M. H.
Ginsberg
, “
Breaking the integrin hinge: A defined structural constraint regulates integrin signaling
,”
J. Biol. Chem.
271
,
6571
6574
(
1996
).
5.
E.
Puklin-Faucher
and
M. P.
Sheetz
, “
The mechanical integrin cycle
,”
J. Cell Sci.
122
,
179
186
(
2009
).
6.
J.
Takagi
,
B. M.
Petre
,
T.
Walz
, and
T. A.
Springer
, “
Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling
,”
Cell
110
,
599
611
(
2002
).
7.
S. W.
Moore
,
P.
Roca-Cusachs
, and
M. P.
Sheetz
, “
Stretchy proteins on stretchy substrates: The important elements of integrin-mediated rigidity sensing
,”
Dev. Cell
19
,
194
206
(
2010
).
8.
J.
Deng
,
C.
Zhao
,
J. P.
Spatz
, and
Q.
Wei
, “
Nanopatterned adhesive, stretchable hydrogel to control ligand spacing and regulate cell spreading and migration
,”
ACS Nano
11
,
8282
8291
(
2017
).
9.
J.
Lee
,
A. A.
Abdeen
,
D.
Zhang
, and
K. A.
Kilian
, “
Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition
,”
Biomaterials
34
,
8140
8148
(
2013
).
10.
P.
Moreno-Layseca
,
J.
Icha
,
H.
Hamidi
, and
J.
Ivaska
, “
Integrin trafficking in cells and tissues
,”
Nat. Cell Biol.
21
,
122
132
(
2019
).
11.
J.
Takagi
,
K.
Strokovich
,
T. A.
Springer
, and
T.
Walz
, “
Structure of integrin α5 β1 in complex with fibronectin
,”
EMBO J.
22
,
4607
4615
(
2003
).
12.
S.
Schumacher
,
D.
Dedden
,
R. V.
Nunez
,
K.
Matoba
,
J.
Takagi
,
C.
Biertümpfel
, and
N.
Mizuno
, “
Structural insights into integrin α 5 β 1 opening by fibronectin ligand
,”
Sci. Adv.
7
,
eabe9716
(
2021
).
13.
T.
Nagai
,
N.
Yamakawa
,
S.-I.
Aota
,
S. S.
Yamada
,
S. K.
Akiyama
,
K.
Olden
, and
K. M.
Yamada
, “
Monoclonal antibody characterization of two distant sites required for function of the central cell-binding domain of fibronectin in cell adhesion, cell migration, and matrix assembly
,”
J. Cell Biol.
114
,
1295
1305
(
1991
).
14.
I.
Wierzbicka-Patynowski
and
J. E.
Schwarzbauer
, “
The ins and outs of fibronectin matrix assembly
,”
J. Cell Sci.
116
,
3269
3276
(
2003
).
15.
J. C.
Friedland
,
M. H.
Lee
, and
D.
Boettiger
, “
Mechanically activated integrin switch controls α 5 β 1 function
,”
Science
323
,
642
644
(
2009
).
16.
D.
Barkan
,
L. H.
El Touny
,
A. M.
Michalowski
,
J. A.
Smith
,
I.
Chu
,
A. S.
Davis
,
J. D.
Webster
,
S.
Hoover
,
R. M.
Simpson
,
J.
Gauldie
, and
J. E.
Green
, “
Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment metastatic outgrowth from dormant tumor cells
,”
Cancer Res.
70
,
5706
5716
(
2010
).
17.
J. Z.
Kechagia
,
J.
Ivaska
, and
P.
Roca-Cusachs
, “
Integrins as biomechanical sensors of the microenvironment
,”
Nat. Rev. Mol. Cell Biol.
20
,
457
473
(
2019
).
18.
M. J.
Paszek
,
N.
Zahir
,
K. R.
Johnson
,
J. N.
Lakins
,
G. I.
Rozenberg
,
A.
Gefen
,
C. A.
Reinhart-King
,
S. S.
Margulies
,
M.
Dembo
,
D.
Boettiger
,
D. A.
Hammer
, and
V. M.
Weaver
, “
Tensional homeostasis and the malignant phenotype
,”
Cancer Cell
8
,
241
254
(
2005
).
19.
J. J.
Northey
,
L.
Przybyla
, and
V. M.
Weaver
, “
Tissue force programs cell fate and tumor aggression mechanotransduction in cell fate and cancer aggression
,”
Cancer Discovery
7
,
1224
1237
(
2017
).
20.
F.
Li
,
S. D.
Redick
,
H. P.
Erickson
, and
V. T.
Moy
, “
Force measurements of the α 5 β 1 integrin–fibronectin interaction
,”
Biophys. J.
84
,
1252
1262
(
2003
).
21.
A. C.
Chang
,
A. H.
Mekhdjian
,
M.
Morimatsu
,
A. K.
Denisin
,
B. L.
Pruitt
, and
A. R.
Dunn
, “
Single molecule force measurements in living cells reveal a minimally tensioned integrin state
,”
ACS Nano
10
,
10745
10752
(
2016
).
22.
M.
Benito-Jardon
,
S.
Klapproth
,
I.
Gimeno-LLuch
,
T.
Petzold
,
M.
Bharadwaj
,
D. J.
Müller
,
G.
Zuchtriegel
,
C. A.
Reichel
, and
M.
Costell
, “
The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes
,”
eLife
6
,
e22264
(
2017
).
23.
L.
Schrödinger
, “The PyMOL molecular graphics system, version 1.8” (2015).
24.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1
,
19
25
(
2015
).
25.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD—Visual molecular dynamics
,”
J. Mol. Graph.
14
,
33
38
(
1996
).
26.
L.
Treloar
, “
The elasticity and related properties of rubbers
,”
Rep. Prog. Phys.
36
,
755
(
1973
).
27.
Y.
Guo
,
S.
Calve
, and
A. B.
Tepole
, “
Multiscale mechanobiology: Coupling models of adhesion kinetics and nonlinear tissue mechanics
,”
Biophys. J.
121
,
525
539
(
2022
).
28.
B.
Cheng
,
W.
Wan
,
G.
Huang
,
Y.
Li
,
G. M.
Genin
,
M. R.
Mofrad
,
T. J.
Lu
,
F.
Xu
, and
M.
Lin
, “
Nanoscale integrin cluster dynamics controls cellular mechanosensing via FAKY397 phosphorylation
,”
Sci. Adv.
6
,
eaax1909
(
2020
).
29.
T.
Brochu
and
R.
Bridson
, “
Robust topological operations for dynamic explicit surfaces
,”
SIAM J. Scient. Comput.
31
,
2472
2493
(
2009
).
30.
W.
Chen
,
J.
Lou
,
J.
Hsin
,
K.
Schulten
,
S. C.
Harvey
, and
C.
Zhu
, “
Molecular dynamics simulations of forced unbending of integrin α v β 3
,”
PLoS Comput. Biol.
7
,
e1001086
(
2011
).
31.
M.
Kulke
and
W.
Langel
, “
Molecular dynamics simulations to the bidirectional adhesion signaling pathway of integrin α v β 3
,”
Proteins: Struct. Funct. Bioinformat.
88
,
679
688
(
2020
).
32.
F.
Kong
,
A. J.
García
,
A. P.
Mould
,
M. J.
Humphries
, and
C.
Zhu
, “
Demonstration of catch bonds between an integrin and its ligand
,”
J. Cell. Biol.
185
,
1275
1284
(
2009
).
33.
M.
Gao
,
D.
Craig
,
V.
Vogel
, and
K.
Schulten
, “
Identifying unfolding intermediates of FN-III10 by steered molecular dynamics
,”
J. Mol. Biol.
323
,
939
950
(
2002
).
34.
A. R.
Bausch
,
F.
Ziemann
,
A. A.
Boulbitch
,
K.
Jacobson
, and
E.
Sackmann
, “
Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry
,”
Biophys. J.
75
,
2038
2049
(
1998
).
35.
T. C.
Bidone
,
A. V.
Skeeters
,
P. W.
Oakes
, and
G. A.
Voth
, “
Multiscale model of integrin adhesion assembly
,”
PLoS Comput. Biol.
15
,
e1007077
(
2019
).
36.
A.
Trache
,
J. P.
Trzeciakowski
,
L.
Gardiner
,
Z.
Sun
,
M.
Muthuchamy
,
M.
Guo
,
S. Y.
Yuan
, and
G. A.
Meininger
, “
Histamine effects on endothelial cell fibronectin interaction studied by atomic force microscopy
,”
Biophys. J.
89
,
2888
2898
(
2005
).
37.
X.
Wu
,
Z.
Sun
,
A.
Foskett
,
J. P.
Trzeciakowski
,
G. A.
Meininger
, and
M.
Muthuchamy
, “
Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions
,”
Am. J. Physiol.
298
,
H2071
H2081
(
2010
).
38.
P.
Roca-Cusachs
,
T.
Iskratsch
, and
M. P.
Sheetz
, “
Finding the weakest link—Exploring integrin-mediated mechanical molecular pathways
,”
J. Cell Sci.
125
,
3025
3038
(
2012
).
39.
A. F.
Oberhauser
,
C.
Badilla-Fernandez
,
M.
Carrion-Vazquez
, and
J. M.
Fernandez
, “
The mechanical hierarchies of fibronectin observed with single-molecule AFM
,”
J. Mol. Biol.
319
,
433
447
(
2002
).
40.
X.
Wang
and
T.
Ha
, “
Defining single molecular forces required to activate integrin and notch signaling
,”
Science
340
,
991
994
(
2013
).
41.
M. H.
Jo
,
J.
Li
,
V.
Jaumouillé
,
Y.
Hao
,
J.
Coppola
,
J.
Yan
,
C. M.
Waterman
,
T. A.
Springer
, and
T.
Ha
, “
Single-molecule characterization of subtype-specific β1 integrin mechanics
,”
Nat. Commun.
13
,
7471
(
2022
).
42.
J. L.
Young
,
X.
Hua
,
H.
Somsel
,
F.
Reichart
,
H.
Kessler
, and
J. P.
Spatz
, “
Integrin subtypes and nanoscale ligand presentation influence drug sensitivity in cancer cells
,”
Nano Lett.
20
,
1183
1191
(
2020
).
43.
P.
Kanchanawong
and
D. A.
Calderwood
, “
Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions
,”
Nat. Rev. Mol. Cell Biol.
24
,
142
161
(
2023
).
44.
J.
Li
,
J.
Yan
, and
T. A.
Springer
, “
Low-affinity integrin states have faster ligand-binding kinetics than the high-affinity state
,”
eLife
10
,
e73359
(
2021
).
45.
Y.
Takada
,
X.
Ye
, and
S.
Simon
, “
The integrins
,”
Genome Biol.
8
,
1
9
(
2007
).
46.
N.
Strohmeyer
,
M.
Bharadwaj
,
M.
Costell
,
R.
Fässler
, and
D. J.
Müller
, “
Fibronectin-bound α 5 β 1 integrins sense load and signal to reinforce adhesion in less than a second
,”
Nat. Mater.
16
,
1262
1270
(
2017
).
47.
Y.
Chen
,
H.
Lee
,
H.
Tong
,
M.
Schwartz
, and
C.
Zhu
, “
Force regulated conformational change of integrin α v β 3
,”
Matrix Biol.
60
,
70
85
(
2017
).
48.
N.
Li
,
S.
Qiu
,
Y.
Fang
,
J.
Wu
, and
Q.
Li
, “
Comparison of linear vs cyclic RGD pentapeptide interactions with integrin α v β 3 by molecular dynamics simulations
,”
Biology
10
,
688
(
2021
).
49.
A.
Malandrino
,
X.
Trepat
,
R. D.
Kamm
, and
M.
Mak
, “
Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices
,”
PLoS Comput. Biol.
15
,
e1006684
(
2019
).
50.
O.
Chaudhuri
,
J.
Cooper-White
,
P. A.
Janmey
,
D. J.
Mooney
, and
V. B.
Shenoy
, “
Effects of extracellular matrix viscoelasticity on cellular behaviour
,”
Nature
584
,
535
546
(
2020
).
51.
S.
Münster
,
L. M.
Jawerth
,
B. A.
Leslie
,
J. I.
Weitz
,
B.
Fabry
, and
D. A.
Weitz
, “
Strain history dependence of the nonlinear stress response of fibrin and collagen networks
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
12197
12202
(
2013
).
52.
C.
Liu
,
R. Y.
Nguyen
,
G. A.
Pizzurro
,
X.
Zhang
,
X.
Gong
,
A. R.
Martinez
, and
M.
Mak
, “
Self-assembly of mesoscale collagen architectures and applications in 3D cell migration
,”
Acta Biomater.
155
,
167
181
(
2023
).
53.
A.
Elosegui-Artola
, “
The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics
,”
Curr. Opin. Cell Biol.
72
,
10
18
(
2021
).
54.
P.
Sacco
,
F.
Piazza
,
C.
Pizzolitto
,
G.
Baj
,
F.
Brun
,
E.
Marsich
, and
I.
Donati
, “
Regulation of substrate dissipation via tunable linear elasticity controls cell activity
,”
Adv. Funct. Mater.
32
,
2200309
(
2022
).
55.
Y.
Ma
,
T.
Han
,
Q.
Yang
,
J.
Wang
,
B.
Feng
,
Y.
Jia
,
Z.
Wei
, and
F.
Xu
, “
Viscoelastic cell microenvironment: Hydrogel-based strategy for recapitulating dynamic ECM mechanics
,”
Adv. Funct. Mater.
31
,
2100848
(
2021
).
56.
W.
Li
,
D.
Wu
,
D.
Hu
,
S.
Zhu
,
C.
Pan
,
Y.
Jiao
,
L.
Li
,
B.
Luo
,
C.
Zhou
, and
L.
Lu
, “
Stress-relaxing double-network hydrogel for chondrogenic differentiation of stem cells
,”
Mater. Sci. Eng. C
107
,
110333
(
2020
).
57.
R. Y.
Nguyen
,
A. T.
Cabral
,
A.
Rossello-Martinez
,
A.
Zulli
,
X.
Gong
,
Q.
Zhang
,
J.
Yan
, and
M.
Mak
, “
Tunable mesoscopic collagen island architectures modulate stem cell behavior
,”
Adv. Mater.
35
,
2207882
(
2023
).
58.
N. J.
Hoff
, “
Approximate analysis of structures in the presence of moderately large creep deformations
,”
Q. Appl. Math.
12
,
49
55
(
1954
).
59.
Z.
Gong
,
S. E.
Szczesny
,
S. R.
Caliari
,
E. E.
Charrier
,
O.
Chaudhuri
,
X.
Cao
,
Y.
Lin
,
R. L.
Mauck
,
P. A.
Janmey
,
J. A.
Burdick
, and
V. B.
Shenoy
, “
Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
E2686
E2695
(
2018
).
60.
N.
Wang
,
J. D.
Tytell
, and
D. E.
Ingber
, “
Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus
,”
Nat. Rev. Mol. Cell. Biol.
10
,
75
82
(
2009
).
61.
S.
Wang
,
E.
Stoops
,
U.
Cp
,
B.
Markus
,
A.
Reuveny
,
E.
Ordan
, and
T.
Volk
, “
Mechanotransduction via the LINC complex regulates DNA replication in myonuclei
,”
J. Cell Biol.
217
,
2005
2018
(
2018
).
62.
S.
Tsukamoto
,
T.
Asakawa
,
S.
Kimura
,
N.
Takesue
,
M. R.
Mofrad
, and
N.
Sakamoto
, “
Intranuclear strain in living cells subjected to substrate stretching: A combined experimental and computational study
,”
J. Biomech.
119
,
110292
(
2021
).
63.
M. J.
Paszek
,
D.
Boettiger
,
V. M.
Weaver
, and
D. A.
Hammer
, “
Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate
,”
PLoS Comput. Biol.
5
,
e1000604
(
2009
).
64.
M.
Mehrbod
and
M. R.
Mofrad
, “
Localized lipid packing of transmembrane domains impedes integrin clustering
,”
PLoS Comput. Biol.
9
,
e1002948
(
2013
).
65.
M.
Mehrbod
,
S.
Trisno
, and
M. R.
Mofrad
, “
On the activation of integrin αIIb β3: Outside-in and inside-out pathways
,”
Biophys. J.
105
,
1304
1315
(
2013
).
66.
A.
Elosegui-Artola
,
A.
Gupta
,
A. J.
Najibi
,
B. R.
Seo
,
R.
Garry
,
C. M.
Tringides
,
I.
de Lázaro
,
M.
Darnell
,
W.
Gu
,
Q.
Zhou
et al., “
Matrix viscoelasticity controls spatiotemporal tissue organization
,”
Nat. Mater.
22
,
1
11
(
2022
).
67.
G. R.
López-Marcial
,
A. Y.
Zeng
,
C.
Osuna
,
J.
Dennis
,
J. M.
García
, and
G. D.
O’Connell
, “
Agarose-based hydrogels as suitable bioprinting materials for tissue engineering
,”
ACS Biomater. Sci. Eng.
4
,
3610
3616
(
2018
).
68.
J. P.
McKinley
,
A. R.
Montes
,
M. N.
Wang
,
A. R.
Kamath
,
G.
Jimenez
,
J.
Lim
,
S. A.
Marathe
,
M. R.
Mofrad
, and
G. D.
O’Connell
, “
Design of a flexing organ-chip to model in situ loading of the intervertebral disc
,”
Biomicrofluidics
16
,
054111
(
2022
).
69.
J. E.
Barthold
,
B. M.
St. Martin
,
S. L.
Sridhar
,
F.
Vernerey
,
S. E.
Schneider
,
A.
Wacquez
,
V. L.
Ferguson
,
S.
Calve
, and
C. P.
Neu
, “
Recellularization and integration of dense extracellular matrix by percolation of tissue microparticles
,”
Adv. Funct. Mater.
31
,
2103355
(
2021
).
70.
P.
Dhavalikar
,
A.
Robinson
,
Z.
Lan
,
D.
Jenkins
,
M.
Chwatko
,
K.
Salhadar
,
A.
Jose
,
R.
Kar
,
E.
Shoga
,
A.
Kannapiran
, and
E.
Cosgriff-Hernandez
, “
Review of integrin-targeting biomaterials in tissue engineering
,”
Adv. Healthcare Mater.
9
,
2000795
(
2020
).
71.
A.
Sontheimer-Phelps
,
B. A.
Hassell
, and
D. E.
Ingber
, “
Modelling cancer in microfluidic human organs-on-chips
,”
Nat. Rev. Cancer
19
,
65
81
(
2019
).

Supplementary Material

You do not currently have access to this content.