Absorption of electromagnetic (EM) wave has been widely studied and applied in EM, optics, and material research. By constructing an adaptive multi-mode absorption, an EM absorber approach that can be used in a variety of EM environments is provided in this research. This property demonstrates the absorber has an improved environment compatibility. It is used as an application example to address the issue that has recently come up in phased array research on the need to reduce the coupling between antenna elements in varied beam-scanning cases. After analyzing the electric and magnetic characteristics of a patch antenna array in different beam-scanning states, an absorber structure is constructed, with electric absorption in the sum beam case, magnetic absorption in the difference beam case, and combined electric-magnetic absorption in other beam scanning cases. The proposed method is systematically investigated and, finally validated by simulation and measurement evidently. In arbitrary beam-scanning states, the absorber exhibits good absorption and coupling reduction performance, while the radiation performance of the array is well maintained after introducing the absorber. This research can be used in absorber and coupling reduction studies, as well as, potentially in metamaterial and electromagnetic compatibility (EMC).

1.
Q.
Li
,
Z.
Zhang
,
L.
Qi
,
Q.
Liao
,
Z.
Kang
, and
Y.
Zhang
, “
Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures
,”
Adv. Sci.
6
,
1801057
(
2019
).
2.
B.
Quan
,
X.
Liang
,
G.
Ji
,
Y.
Cheng
,
W.
Liu
,
J.
Ma
,
Y.
Zhang
,
D.
Li
, and
G.
Xu
, “
Dielectric polarization in electromagnetic wave absorption: Review and perspective
,”
J. Alloys Compd.
728
,
1065
1075
(
2017
).
3.
G.
Wang
,
S. J. H.
Ong
,
Y.
Zhao
,
Z. J.
Xu
, and
G.
Ji
, “
Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding
,”
J. Mater. Chem. A
8
,
24368
24387
(
2020
).
4.
M. S.
Vezie
,
S.
Few
,
I.
Meager
,
G.
Pieridou
,
B.
Dörling
,
R. S.
Ashraf
,
A. R.
Goñi
,
H.
Bronstein
,
I.
McCulloch
,
S. C.
Hayes
, and
M.
Campoy-Quiles
, “
Exploring the origin of high optical absorption in conjugated polymers
,”
Nat. Mater.
15
,
746
753
(
2016
).
5.
Z.
Zheng
,
H.
Ji
,
P.
Yu
, and
Z.
Wang
, “
Recent progress towards quantum dot solar cells with enhanced optical absorption
,”
Nanoscale Res. Lett.
11
,
1
8
(
2016
).
6.
J.
Yan
,
Y.
Huang
,
C.
Wei
,
N.
Zhang
, and
P.
Liu
, “
Covalently bonded polyaniline/graphene composites as high-performance electromagnetic (EM) wave absorption materials
,”
Compos. Part A: Appl. Sci. Manuf.
99
,
121
128
(
2017
).
7.
P.
Yu
,
L. V.
Besteiro
,
Y.
Huang
,
J.
Wu
,
L.
Fu
,
H. H.
Tan
,
C.
Jagadish
,
G. P.
Wiederrecht
,
A. O.
Govorov
, and
Z.
Wang
, “
Broadband metamaterial absorbers
,”
Adv. Opt. Mater.
7
,
1800995
(
2019
).
8.
S.
Xiao
,
T.
Wang
,
T.
Liu
,
C.
Zhou
,
X.
Jiang
, and
J.
Zhang
, “
Active metamaterials and metadevices: A review
,”
J. Phys. D: Appl. Phys.
53
,
503002
(
2020
).
9.
M.
Muamer Kadic
,
M.
Milton
,
G.
van Hecke
, and
M.
Wegener
, “
3D metamaterials
,”
Nat. Rev. Phys.
1
,
198
210
(
2019
).
10.
W.
Guo
,
Y.
Liu
, and
T.
Han
, “
Ultra-broadband infrared metasurface absorber
,”
Opt. Express
24
,
20586
20592
(
2016
).
11.
R.
Alaee
,
M.
Albooyeh
, and
C.
Rockstuhl
, “
Theory of metasurface based perfect absorbers
,”
J. Phys. D: Appl. Phys.
50
,
503002
(
2017
).
12.
X.
Liu
,
K.
Fan
,
I. V.
Shadrivov
, and
W. J.
Padilla
, “
Experimental realization of a terahertz all-dielectric metasurface absorber
,”
Opt. Express
25
,
191
201
(
2017
).
13.
N. I.
Landy
,
S.
Sajuyigbe
,
J. J.
Mock
,
D. R.
Smith
, and
W. J.
Padilla
, “
Perfect metamaterial absorber
,”
Phys. Rev. Lett.
100
,
207402
(
2008
).
14.
R.
Xu
,
J.
Luo
,
J.
Sha
,
J.
Zhong
,
Z.
Xu
,
Y.
Tong
, and
Y.-S.
Lin
, “
Stretchable IR metamaterial with ultra-narrowband perfect absorption
,”
Appl. Phys. Lett.
113
,
101907
(
2018
).
15.
Y.-L.
Liao
,
Y.
Zhao
,
X.
Zhang
, and
Z.
Chen
, “
An ultra-narrowband absorber with a compound dielectric grating and metal substrate
,”
Opt. Commun.
385
,
172
176
(
2017
).
16.
F.
Costa
,
A.
Monorchio
, and
G.
Manara
, “
Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces
,”
IEEE Trans. Antennas Propag.
58
,
1551
1558
(
2010
).
17.
S.
Li
,
J.
Gao
,
X.
Cao
,
W.
Li
,
Z.
Zhang
, and
D.
Zhang
, “
Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances
,”
J. Appl. Phys.
116
,
043710
(
2014
).
18.
M. A.
Cole
,
D. A.
Powell
, and
I. V.
Shadrivov
, “
Strong terahertz absorption in all-dielectric Huygens’ metasurfaces
,”
Nanotechnology
27
,
424003
(
2016
).
19.
C.-Y.
Wang
,
J.-G.
Liang
,
T.
Cai
,
H.-P.
Li
,
W.-Y.
Ji
,
Q.
Zhang
, and
C.-W.
Zhang
, “
High-performance and ultra-broadband metamaterial absorber based on mixed absorption mechanisms
,”
IEEE Access
7
,
57259
57266
(
2019
).
20.
A.
Sharma
,
S.
Ghosh
, and
K. V.
Srivastava
, “
A polarization-insensitive band-notched absorber for radar cross section reduction
,”
IEEE Antennas Wirel. Propag. Lett.
20
,
259
263
(
2020
).
21.
Y.
Pang
,
Y.
Li
,
J.
Wang
,
M.
Yan
,
H.
Chen
,
L.
Sun
,
Z.
Xu
, and
S.
Qu
, “
Carbon fiber assisted glass fabric composite materials for broadband radar cross section reduction
,”
Compos. Sci. Technol.
158
,
19
25
(
2018
).
22.
H. B.
Baskey
,
E.
Johari
, and
M. J.
Akhtar
, “
Metamaterial structure integrated with a dielectric absorber for wideband reduction of antennas radar cross section
,”
IEEE Trans. Electromagn. Compat.
59
,
1060
1069
(
2017
).
23.
M.
Yoo
,
H. K.
Kim
, and
S.
Lim
, “
Electromagnetic-based ethanol chemical sensor using metamaterial absorber
,”
Sens. Actuators B: Chem.
222
,
173
180
(
2016
).
24.
M.
Zhang
,
M.-S.
Cao
,
J.-C.
Shu
,
W.-Q.
Cao
,
L.
Li
, and
J.
Yuan
, “
Electromagnetic absorber converting radiation for multifunction
,”
Mater. Sci. Eng.: R: Rep.
145
,
100627
(
2021
).
25.
M.
Bakır
,
M.
Karaaslan
,
F.
Dinçer
,
K.
Delihacioglu
, and
C.
Sabah
, “
Tunable perfect metamaterial absorber and sensor applications
,”
J. Mater. Sci.: Mater. Electron.
27
,
12091
12099
(
2016
).
26.
B.-X.
Wang
,
G.-Z.
Wang
, and
T.
Sang
, “
Simple design of novel triple-band terahertz metamaterial absorber for sensing application
,”
J. Phys. D: Appl. Phys.
49
,
165307
(
2016
).
27.
M. G. N.
Alsath
,
M.
Kanagasabai
, and
B.
Balasubramanian
, “
Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays
,”
IEEE Antennas Wirel. Propag. Lett.
12
,
15
18
(
2012
).
28.
C.-Y.
Chiu
,
C.-H.
Cheng
,
R. D.
Murch
, and
C. R.
Rowell
, “
Reduction of mutual coupling between closely-packed antenna elements
,”
IEEE Trans. Antennas Propag.
55
,
1732
1738
(
2007
).
29.
F.
Yang
and
Y.
Rahmat-Samii
, “
Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications
,”
IEEE Trans. Antennas Propag.
51
,
2936
2946
(
2003
).
30.
H.
Luan
,
C.
Chen
,
W.
Chen
,
L.
Zhou
,
H.
Zhang
, and
Z.
Zhang
, “
Mutual coupling reduction of closely E/H-plane coupled antennas through metasurfaces
,”
IEEE Antennas Wirel. Propag. Lett.
18
,
1996
2000
(
2019
).
31.
M.
Li
,
B. G.
Zhong
, and
S.
Cheung
, “
Isolation enhancement for mimo patch antennas using near-field resonators as coupling-mode transducers
,”
IEEE Trans. Antennas Propag.
67
,
755
764
(
2018
).
32.
M.
Zdrojek
,
J.
Bomba
,
A.
Łapińska
,
A.
Dużyńska
,
K.
Żerańska-Chudek
,
J.
Suszek
,
L.
Stobiński
,
A.
Taube
,
M.
Sypek
, and
J.
Judek
, “
Graphene-based plastic absorber for total sub-terahertz radiation shielding
,”
Nanoscale
10
,
13426
13431
(
2018
).
33.
J.
Chen
,
J.
Li
, and
Q. H.
Liu
, “
Designing graphene-based absorber by using HIE-FDTD method
,”
IEEE Trans. Antennas Propag.
65
,
1896
1902
(
2017
).
34.
A. K.
Rashid
,
Z.
Shen
, and
S.
Aditya
, “
Wideband microwave absorber based on a two-dimensional periodic array of microstrip lines
,”
IEEE Trans. Antennas Propag.
58
,
3913
3922
(
2010
).
35.
N.
Bai
,
C.
Feng
,
Y.
Liu
,
H.
Fan
,
C.
Shen
, and
X.
Sun
, “
Integrated microstrip meander line traveling wave tube based on metamaterial absorber
,”
IEEE Trans. Electron Devices
64
,
2949
2954
(
2017
).
36.
H.
Qi
,
L.
Liu
,
X.
Yin
,
H.
Zhao
, and
W. J.
Kulesza
, “
Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall
,”
IEEE Antennas Wirel. Propag. Lett.
15
,
191
194
(
2015
).
37.
H. H.
Tran
and
N.
Nguyen-Trong
, “
Performance enhancement of mimo patch antenna using parasitic elements
,”
IEEE Access
9
,
30011
30016
(
2021
).
38.
F.
Urimubenshi
,
D. B.
Konditi
,
J.
de Dieu Iyakaremye
,
P. M.
Mpele
, and
A.
Munyaneza
, “
A novel approach for low mutual coupling and ultra-compact two port mimo antenna development for uwb wireless application
,”
Heliyon
8
,
e09057
(
2022
).
39.
Z.
Qamar
,
U.
Naeem
,
S. A.
Khan
,
M.
Chongcheawchamnan
, and
M. F.
Shafique
, “
Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate
,”
IEEE Trans. Antennas Propag.
64
,
1653
1660
(
2016
).
40.
M.
Alibakhshikenari
,
B. S.
Virdee
,
P.
Shukla
,
C. H.
See
,
R.
Abd-Alhameed
,
M.
Khalily
,
F.
Falcone
, and
E.
Limiti
, “
Interaction between closely packed array antenna elements using meta-surface for applications such as mimo systems and synthetic aperture radars
,”
Radio Sci.
53
,
1368
1381
(
2018
).
41.
A. A.
Ghannad
,
M.
Khalily
,
P.
Xiao
,
R.
Tafazolli
, and
A. A.
Kishk
, “
Enhanced matching and vialess decoupling of nearby patch antennas for mimo system
,”
IEEE Antennas Wirel. Propag. Lett.
18
,
1066
1070
(
2019
).
42.
I.
Nadeem
and
D.-Y.
Choi
, “
Study on mutual coupling reduction technique for mimo antennas
,”
IEEE Access
7
,
563
586
(
2018
).
43.
C.-A.
Yu
,
K.-S.
Chin
, and
R.
Lu
, “24-GHz wide-beam patch antenna array laterally loaded with parasitic strips,” in 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC) (IEEE, 2019), pp. 1–3.
44.
K.
Da Xu
,
J.
Zhu
,
S.
Liao
, and
Q.
Xue
, “
Wideband patch antenna using multiple parasitic patches and its array application with mutual coupling reduction
,”
IEEE Access
6
,
42497
42506
(
2018
).
45.
E.
Rajo-Iglesias
,
Ó.
Quevedo-Teruel
, and
L.
Inclan-Sanchez
, “
Planar soft surfaces and their application to mutual coupling reduction
,”
IEEE Trans. Antennas Propag.
57
,
3852
3859
(
2009
).
46.
S. D.
Assimonis
,
T. V.
Yioultsis
, and
C. S.
Antonopoulos
, “
Design and optimization of uniplanar EBG structures for low profile antenna applications and mutual coupling reduction
,”
IEEE Trans. Antennas Propag.
60
,
4944
4949
(
2012
).
47.
F.
Yang
and
Y.
Rahmat-Samii
, “
Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications
,”
IEEE Trans. Antennas Propag.
51
,
2936
2946
(
2003
).
48.
I.
Mohamed
,
M.
Abdalla
, and
A. E.-A.
Mitkees
, “
Perfect isolation performance among two-element mimo antennas
,”
AEU-Int. J. Electron. Commun.
107
,
21
31
(
2019
).
49.
M. M.
Bait-Suwailam
,
O. F.
Siddiqui
, and
O. M.
Ramahi
, “
Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators
,”
IEEE Antennas Wirel. Propag. Lett.
9
,
876
878
(
2010
).
50.
A.
Habashi
,
J.
Nourinia
, and
C.
Ghobadi
, “
Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split-ring resonators (FSRRs)
,”
IEEE Antennas Wirel. Propag. Lett.
10
,
862
865
(
2011
).

Supplementary Material

You do not currently have access to this content.