The dynamic response of dielectric elastomers is widely used in many functional devices, but current research has neglected the effect of varying dielectric permittivity on their dynamic oscillations and stability. This paper studies the thin-walled dielectric balloon in which the stretch-dependent dielectric permittivity is considered. We obtain the dynamic equation of motion by Hamilton’s principle. Based on the principle of no energy dissipation in conservative systems, we establish energy conservation at the maximum stretching position and at the initial moment, then we investigate the stability in the dynamic case. It is found that a stretch-related dielectric permittivity can increase the critical electric field of the balloon and can also change the mode of electric field instability and modulate the critical stretch value. In the dynamic case, the stretch-dependent permittivity increases the critical electric field by 4 % when the balloon is only subjected to electric force; moreover, it increases the critical stretch value by 316.68 % by changing the unstable mode from pull-in instability to snap-through instability. It is hoped that this work will provide new thinking in designing functional devices by using the dynamical response and stability of dielectric elastomers.

1.
R.
Pelrine
,
R.
Kornbluh
,
Q.
Pei
, and
J.
Joseph
, “
High-speed electrically actuated elastomers with strain greater than 100%
,”
Science
287
,
836
839
(
2000
).
2.
F.
Carpi
,
S.
Bauer
, and
D. D.
Rossi
, “
Stretching dielectric elastomer performance
,”
Science
330
,
1759
1761
(
2010
).
3.
X.
Zhao
and
Z.
Suo
, “
Theory of dielectric elastomers capable of giant deformation of actuation
,”
Phys. Rev. Lett.
104
,
178302
(
2010
).
4.
G.
Zurlo
,
M.
Destrade
,
D.
DeTommasi
, and
G.
Puglisi
, “
Catastrophic thinning of dielectric elastomers
,”
Phys. Rev. Lett.
118
,
078001
(
2017
).
5.
Y.
Liu
,
L.
Liu
,
Z.
Zhang
, and
J.
Leng
, “
Dielectric elastomer film actuators: Characterization, experiment and analysis
,”
Smart Mater. Struct.
18
,
095024
(
2009
).
6.
P.
Brochu
and
Q.
Pei
, “
Advances in dielectric elastomers for actuators and artificial muscles
,”
Macromol. Rapid Commun.
31
,
10
36
(
2010
).
7.
A. H.
Rahmati
,
S.
Yang
,
S.
Bauer
, and
P.
Sharma
, “
Nonlinear bending deformation of soft electrets and prospects for engineering flexoelectricity and transverse ( d 31) piezoelectricity
,”
Soft Matter
15
,
127
148
(
2019
).
8.
L.
Chen
,
X.
Yang
,
B.
Wang
,
S.
Yang
,
K.
Dayal
, and
P.
Sharma
, “
The interplay between symmetry-breaking and symmetry-preserving bifurcations in soft dielectric films and the emergence of giant electro-actuation
,”
Extreme Mech. Lett.
43
,
101151
(
2021
).
9.
P.
Banet
,
N.
Zeggai
,
J.
Chavanne
,
G. T. M.
Nguyen
,
L.
Chikh
,
C.
Plesse
,
M.
Almanza
,
T.
Martinez
,
Y.
Civet
,
Y.
Perriard
, and
O.
Fichet
, “
Evaluation of dielectric elastomers to develop materials suitable for actuation
,”
Soft Matter
17
,
10786
10805
(
2021
).
10.
S. J. A.
Koh
,
X.
Zhao
, and
Z.
Suo
, “
Maximal energy that can be converted by a dielectric elastomer generator
,”
Appl. Phys. Lett.
94
,
262902
(
2009
).
11.
S.
Rudykh
,
K.
Bhattacharya
, and
G.
deBotton
, “
Snap-through actuation of thick-wall electroactive balloons
,”
Int. J. Non-Linear Mech.
47
,
206
209
(
2012
).
12.
S.
Yang
,
X.
Zhao
, and
P.
Sharma
, “
Avoiding the pull-in instability of a dielectric elastomer film and the potential for increased actuation and energy harvesting
,”
Soft Matter
13
,
4552
4558
(
2017
).
13.
F.
Invernizzi
,
S.
Dulio
,
M.
Patrini
,
G.
Guizzetti
, and
P.
Mustarelli
, “
Energy harvesting from human motion: Materials and techniques
,”
Chem. Soc. Rev.
45
,
5455
5473
(
2016
).
14.
L.
Chen
and
S.
Yang
, “
Enhancing the electromechanical coupling in soft energy harvesters by using graded dielectric elastomers
,”
Micromachines
12
,
1187
(
2021
).
15.
J.
Fox
and
N.
Goulbourne
, “
On the dynamic electromechanical loading of dielectric elastomer membranes
,”
J. Mech. Phys. Solids
56
,
2669
2686
(
2008
).
16.
F.
Carpi
,
G.
Frediani
,
S.
Turco
, and
D.
De Rossi
, “
Bioinspired tunable lens with muscle-like electroactive elastomers
,”
Adv. Funct. Mater.
21
,
4152
4158
(
2011
).
17.
E.
Acome
,
S. K.
Mitchell
,
T. G.
Morrissey
,
M. B.
Emmett
,
C.
Benjamin
,
M.
King
,
M.
Radakovitz
, and
C.
Keplinger
, “
Hydraulically amplified self-healing electrostatic actuators with muscle-like performance
,”
Science
359
,
61
65
(
2018
).
18.
Y.
Shi
,
E.
Askounis
,
R.
Plamthottam
,
T.
Libby
,
Z.
Peng
,
K.
Youssef
,
J.
Pu
,
R.
Pelrine
, and
Q.
Pei
, “
A processable, high-performance dielectric elastomer and multilayering process
,”
Science
377
,
228
232
(
2022
).
19.
Q.
Deng
,
F.
Ahmadpoor
,
W. E.
Brownell
, and
P.
Sharma
, “
The collusion of flexoelectricity and Hopf bifurcation in the hearing mechanism
,”
J. Mech. Phys. Solids
130
,
245
261
(
2019
).
20.
A.
Pal
,
V.
Restrepo
,
D.
Goswami
, and
R. V.
Martinez
, “
Exploiting mechanical instabilities in soft robotics: Control, sensing, and actuation
,”
Adv. Mater.
33
,
2006939
(
2021
).
21.
G.
Kofod
,
W.
Wirges
,
M.
Paajanen
, and
S.
Bauer
, “
Energy minimization for self-organized structure formation and actuation
,”
Appl. Phys. Lett.
90
,
81916
(
2007
).
22.
J.
Huang
,
T.
Li
,
C.
Chiang Foo
,
J.
Zhu
,
D. R.
Clarke
, and
Z.
Suo
, “
Giant, voltage-actuated deformation of a dielectric elastomer under dead load
,”
Appl. Phys. Lett.
100
,
41911
(
2012
).
23.
T.
Lu
,
C.
Ma
, and
T.
Wang
, “
Mechanics of dielectric elastomer structures: A review
,”
Extreme Mech. Lett.
38
,
100752
(
2020
).
24.
X.
Zhao
and
Q.
Wang
, “
Harnessing large deformation and instabilities of soft dielectrics: Theory, experiment, and application
,”
Appl. Phys. Rev.
1
,
021304
(
2014
).
25.
S.
Yang
and
P.
Sharma
, “
A tutorial on the stability and bifurcation analysis of the electromechanical behaviour of soft materials
,”
Appl. Mech. Rev.
75
,
44801
(
2023
).
26.
K.
Bertoldi
and
M.
Gei
, “
Instabilities in multilayered soft dielectrics
,”
J. Mech. Phys. Solids
59
,
18
42
(
2011
).
27.
X.
He
,
H.
Yong
, and
Y.
Zhou
, “
The characteristics and stability of a dielectric elastomer spherical shell with a thick wall
,”
Smart Mater. Struct.
20
,
055016
(
2011
).
28.
T.
Li
,
C.
Keplinger
,
R.
Baumgartner
,
S.
Bauer
,
W.
Yang
, and
Z.
Suo
, “
Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability
,”
J. Mech. Phys. Solids
61
,
611
628
(
2013
).
29.
J.-S.
Plante
and
S.
Dubowsky
, “
Large-scale failure modes of dielectric elastomer actuators
,”
Int. J. Solids Struct.
43
,
7727
7751
(
2006
).
30.
M.
Kollosche
and
G.
Kofod
, “
Electrical failure in blends of chemically identical, soft thermoplastic elastomers with different elastic stiffness
,”
Appl. Phys. Lett.
96
,
71904
(
2010
).
31.
J.
Zhu
,
S.
Cai
, and
Z.
Suo
, “
Resonant behavior of a membrane of a dielectric elastomer
,”
Int. J. Solids Struct.
47
,
3254
3262
(
2010
).
32.
T.
Li
,
S.
Qu
, and
W.
Yang
, “
Electromechanical and dynamic analyses of tunable dielectric elastomer resonator
,”
Int. J. Solids Struct.
49
,
3754
3761
(
2012
).
33.
D.
Eder-Goy
,
Y.
Zhao
, and
B.
Xu
, “
Dynamic pull-in instability of a prestretched viscous dielectric elastomer under electric loading
,”
Acta Mech.
228
,
4293
4307
(
2017
).
34.
K.
Mrabet
,
E.
Zaouali
, and
F.
Najar
, “
Internal resonance and nonlinear dynamics of a dielectric elastomer circular membrane
,”
Int. J. Solids Struct.
236
,
111338
(
2022
).
35.
X.
Xing
,
L.
Chen
,
C.
Zhao
, and
S.
Yang
, “
Nonlinear oscillations of dielectric elastomer actuators with stretch-dependent permittivity
,”
J. Appl. Mech.
89
,
111009
(
2022
).
36.
J.
Zhang
,
H.
Chen
,
B.
Li
,
D.
McCoul
, and
Q.
Pei
, “
Coupled nonlinear oscillation and stability evolution of viscoelastic dielectric elastomers
,”
Soft Matter
11
,
7483
7493
(
2015
).
37.
Y.
Li
,
I.
Oh
,
J.
Chen
,
H.
Zhang
, and
Y.
Hu
, “
Nonlinear dynamic analysis and active control of visco-hyperelastic dielectric elastomer membrane
,”
Int. J. Solids Struct.
152
,
28
38
(
2018
).
38.
F.
Liu
and
J.
Zhou
, “
Shooting and arc-length continuation method for periodic solution and bifurcation of nonlinear oscillation of viscoelastic dielectric elastomers
,”
Journal of Applied Mechanics
85
,
11005
(
2017
).
39.
J.
Zhang
,
H.
Chen
,
J.
Sheng
,
L.
Liu
,
Y.
Wang
, and
S.
Jia
, “
Dynamic performance of dissipative dielectric elastomers under alternating mechanical load
,”
Appl. Phys. A
116
,
59
67
(
2014
).
40.
A.
Khurana
,
A.
Kumar
,
S. K.
Raut
,
A. K.
Sharma
, and
M.
Joglekar
, “
Effect of viscoelasticity on the nonlinear dynamic behavior of dielectric elastomer minimum energy structures
,”
Int. J. Solids Struct.
208
,
141
153
(
2021
).
41.
Z.
Zhang
,
J.
Li
,
Y.
Liu
, and
Y.
Xie
, “
Nonlinear oscillations of a one-dimensional dielectric elastomer generator system
,”
Extreme Mechanics Letters
53
,
101718
(
2022
).
42.
X.
Lv
,
L.
Liu
,
Y.
Liu
, and
J.
Leng
, “
Dynamic performance of dielectric elastomer balloon incorporating stiffening and damping effect
,”
Smart Mater. Struct.
27
,
105036
(
2018
).
43.
A.
Alibakhshi
,
W.
Chen
, and
M.
Destrade
, “
Nonlinear vibration and stability of a dielectric elastomer balloon based on a strain-stiffening model
,”
J. Elast.
153
(4–5),
533
548
(
2023
).
44.
J.
Zhu
,
S.
Cai
, and
Z.
Suo
, “
Nonlinear oscillation of a dielectric elastomer balloon
,”
Polym. Int.
59
,
378
383
(
2010
).
45.
H.
Yong
,
X.
He
, and
Y.
Zhou
, “
Dynamics of a thick-walled dielectric elastomer spherical shell
,”
Int. J. Eng. Sci.
49
,
792
800
(
2011
).
46.
B.
Xu
,
R.
Mueller
,
A.
Theis
,
M.
Klassen
, and
D.
Gross
, “
Dynamic analysis of dielectric elastomer actuators
,”
Appl. Phys. Lett.
100
,
112903
(
2012
).
47.
A. K.
Sharma
,
N.
Arora
, and
M. M.
Joglekar
, “
Dc dynamic pull-in instability of a dielectric elastomer balloon: An energy-based approach
,”
Proc. R. Soc. A
474
,
20170900
(
2018
).
48.
J.
Sheng
,
H.
Chen
,
L.
Liu
,
J.
Zhang
,
Y.
Wang
, and
S.
Jia
, “
Dynamic electromechanical performance of viscoelastic dielectric elastomers
,”
J. Appl. Phys.
114
,
134101
(
2013
).
49.
M.
Wissler
and
E.
Mazza
, “
Electromechanical coupling in dielectric elastomer actuators
,”
Sensors and Actuators A: Physical
138
,
384
393
(
2007
).
50.
T. G.
McKay
,
E.
Calius
, and
I. A.
Anderson
, “The dielectric constant of 3M VHB: A parameter in dispute,” in Electroactive Polymer Actuators and Devices (EAPAD) (SPIE, 2009), Vol. 7287, pp. 209–218.
51.
Z.
Suo
,
X.
Zhao
, and
W. H.
Greene
, “
A nonlinear field theory of deformable dielectrics
,”
J. Mech. Phys. Solids
56
,
467
486
(
2008
).
52.
X.
Zhao
and
Z.
Suo
, “
Electrostriction in elastic dielectrics undergoing large deformation
,”
J. Appl. Phys.
104
,
123530
(
2008
).
53.
R.
Rivlin
, “
Large elastic deformations of isotropic materials. IV. further developments of the general theory
,”
Phil. Trans. Royal Soc. A
241
(835),
379
397
(
1948
).
54.
L.
Chen
and
S.
Yang
, “
Electro-cavitation and electro-assisted snap-through instability of a hollow sphere of dielectric elastomers
,”
Thin-Walled Structures
181
,
109995
(
2022
).
55.
H.
Li
,
L.
Chen
,
C.
Zhao
, and
S.
Yang
, “
Evoking or suppressing electromechanical instabilities in soft dielectrics with deformation-dependent dielectric permittivity
,”
Int. J. Mech. Sci.
202
,
106507
(
2021
).
56.
M.
Geradin
and
D. J.
Rixen
,
Mechanical Vibrations: Theory and Application to Structural Dynamics
,
3rd ed.
(
Wiley
,
2015
).
57.
Y.
Su
,
H.
Conroy Broderick
,
W.
Chen
, and
M.
Destrade
, “
Wrinkles in soft dielectric plates
,”
J. Mech. Phys. Solids
119
,
298
318
(
2018
).
You do not currently have access to this content.