Micromagnetic simulations have been used to create reversible logic gates that utilize magnetic skyrmions as input and output signals. The geometrical design of the logic devices consists of a two-dimensional assembly of ferromagnetic nanotracks, resembling rectangular grooves. Drawing an analogy to the billiard-ball model, this study takes into account elastic collisions between magnetic skyrmions and introduces the concept of control skyrmion. The application of spin-polarized currents to the system induces the motion of magnetic skyrmions along the nanotracks. The synchronized movement of magnetic skyrmions across the operational logic gates, required for their interaction, is achieved by incorporating multiple triangular magnetic notches along the nanotracks. Short polarized current pulses are then applied through the logic gates to facilitate this process. We have successfully implemented the XOR/AND and Full Adder logic gates as well as the reversible Toffoli and Peres logic gates using skyrmion-based architectures for computing. Our results offer valuable guidelines for leveraging magnetic skyrmions as digital signals in skyrmion-based computing systems.

1.
S.
Mühlbauer
,
B.
Binz
,
F.
Jonietz
,
C.
Pfleiderer
,
A.
Rosch
,
A.
Neubauer
,
R.
Georgii
, and
P.
Böni
, “
Skyrmion lattice in a chiral magnet
,”
Science
323
,
915
919
(
2009
).
2.
N.
Nagaosa
and
Y.
Tokura
, “
Topological properties and dynamics of magnetic skyrmions
,”
Nat. Nanotechnol.
8
,
899
911
(
2013
).
3.
I.
Dzyaloshinsky
, “
Thermodynamic theory of weak ferromagnetism of antiferromagnetics
,”
J. Phys. Chem. Solid
4
(4),
241–255
(1958).
4.
T.
Moriya
, “
Anisotropic superexchange interaction and weak ferromagnetism
,”
Phys. Rev.
120
,
91
(
1960
).
5.
N.
Romming
,
C.
Hanneken
,
M.
Menzel
,
J. E.
Bickel
,
B.
Wolter
,
K.
von Bergmann
,
A.
Kubetzka
, and
R.
Wiesendanger
, “
Wrinting and deleting single magnetic skyrmions
,”
Science
341
,
636
639
(
2013
).
6.
X.
Zhang
,
M.
Ezawa
, and
Y.
Zhou
, “
Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions
,”
Sci. Rep.
5
,
9400
(
2015
).
7.
X.
Zhang
,
Y.
Zhou
, and
M.
Ezawa
, “
Antiferromaggnetic skyrmion stability, creation and manipulation
,”
Sci. Rep.
6
,
24795
(
2016
).
8.
S. K.
Everschor-Sitte
,
J.
Masell
,
R. M.
Reeve
, and
M.
Kläui
, “
Perspective: Magnetic skyrmions—Overview of recent progress in an active research field
,”
J. Appl. Phys.
124
,
240901
(
2018
).
9.
C. Back. V.
Cros
,
H.
Ebert
,
K.
Everschor-Sitte
,
A.
Fert
,
M.
Garst
,
T.
Ma
,
S.
Mankovsky
,
T. L.
Monchesky
,
M.
Mostovoy
,
N.
Nagaosa
,
S. S. P.
Parkin
,
C.
Pfleiderer
,
N.
Reyren
,
A.
Rosch
,
Y.
Taguchi
,
Y.
Tokura
,
K.
von Bergmann
, and
J.
Zang
, “
The 2020 skyrmionics roadmap
,”
J. Phys. D Appl. Phys.
53
,
363001
(
2020
).
10.
K.
Wang
,
V.
Bheemarasetty
,
J.
Duan
,
S.
Zhou
, and
G.
Xiao
, “
Fundamental physics and applications of skyrmions: A review
,”
J. Magn. Magn. Matter.
563
,
169905
(
2022
).
11.
R. P.
Loreto
,
X.
Zhang
,
Y.
Zhou
,
M.
Ezawa
,
X.
Liu
, and
C. I. L.
de Araujo
, “
Manipulation of magnetic skyrmions in a locally modified synthetic antiferromagnetic racetrack
,”
J. Magn. Magn. Matter.
482
,
155
159
(
2019
).
12.
X.
Zhang
,
J.
Müller
,
J.
Xia
,
M.
Garst
,
X.
Liu
, and
Y.
Zhou
, “
Motion of skyrmions in nanowires driven by magnonic momentum-transfer forces
,”
New J. Phys.
19
,
065001
(
2017
).
13.
Y.
Liu
,
T. T.
Liu
,
Z.
Jin
,
Z. P.
Hou
,
D. Y.
Chen
,
Z.
Fan
,
M.
Zeng
,
X. B.
Lu
,
X. S.
Gao
,
M. H.
Qin
, and
J. M.
Liu
, “
Spin-wave-driven skyrmion dynamics in ferrimagnets: Effect of net angular momentum
,”
Phys. Rev. B.
106
,
064424
(
2022
).
14.
A.
Fert
,
C.
Vincent Cros
, and
J.
Sampaio
, “
Skyrmions on the track
,”
Nat. Nanotechnol.
8
,
152
156
(
2013
).
15.
K. W.
Moon
,
D. H.
Kim
,
S. G.
Je
,
B. S.
Chun
,
W.
Kim
,
Z. Q.
Qiu
,
S. B.
Choe
, and
C.
Hwang
, “
Skyrmion motion driven by oscillating magnetic field
,”
Sci. Rep.
6
,
20360
(
2016
).
16.
W.
Legrand
,
D.
Maccariello
,
F.
Ajejas
,
S.
Collin
,
A.
Vecchiola
,
K.
Bouzehouane
,
N.
Reyren
,
V.
Cros
, and
A.
Fert
, “
Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets
,”
Nat. Mater.
19
,
34–42
(
2020
).
17.
M.
Chauwin
,
X.
Hu
,
F.
Garcia-Sanchez
,
N.
Betrabet
,
A.
Paler
,
C.
Moutafis
, and
J. S.
Friedman
, “
Skyrmion logic system for large-scale reversible computation
,”
Phys. Rev. Appl.
12
,
064053
(
2019
).
18.
S.
Luo
,
M.
Song
,
X.
Li
,
Y.
Zhang
,
J.
Hong
,
X.
Yang
,
X.
Zou
,
N.
Xu
, and
L.
You
, “
Reconfigurable skyrmion logic gates
,”
Nano Lett.
18
,
1180
(
2018
).
19.
Y.
Zhang
,
S.
Luo
,
B.
Yan
,
J.
Ou-Yang
,
X.
Yang
,
S.
Chen
,
B.
Zhu
, and
L.
You
, “
Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy
,”
Nanoscale
9
,
10212
(
2017
).
20.
C.
Psaroudaki
and
C.
Panagopoulos
, “
Skyrmion qubits: A New class of quantum logic elements based on nanoscale magnetization
,”
Phys. Rev. Lett.
127
,
067201
(
2021
).
21.
S.
Luo
and
L.
You
, “
Skyrmion devices for memory and logic applications
,”
APL Mater.
9
,
050901
(
2021
).
22.
L.
Gnoli
,
F.
Riente
,
M.
Vacca
,
M. R.
Roch
, and
M.
Graziano
, “
Skyrmion logic-in-memory architecture for maximum/minimum search
,”
Electronics
10
,
155
(
2021
).
23.
Z. R.
Yan
,
Y. Z.
Liu
,
Y.
Guang
,
K.
Yue
,
J. F.
Feng
,
R. K.
Lake
,
G. Q.
Yu
, and
X. F.
Han
, “
Skyrmion-Based programmable logic device with complete boolean logic functions
,”
Phys. Rev. Appl.
15
,
064004
(
2021
).
24.
M.
Fattouhi
,
K. Y.
Mak
,
Y.
Zhou
,
X.
Zhang
,
X.
Liu
, and
M.
El Hafidi
, “
Logic gates based on synthetic antiferromagnetic bilayer skyrmions
,”
Phys. Rev. Appl.
16
,
014040
(
2021
).
25.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
, “
The design and verification of MuMax3
,”
AIP Adv.
4
,
107133
(
2014
).
26.
Y.
Shu
,
Q.
Li
,
J.
Xia
,
P.
Lai
,
Z.
Hou
,
Y.
Zhao
,
D.
Zhang
,
Y.
Zhou
,
X.
Liu
, and
G.
Zhao
, “
Realization of the skyrmionic logic gates and diodes in the same racetrack with enhanced and modified edges
,”
Appl. Phys. Lett.
121
,
042402
(
2022
).
27.
F. A.
Gallegos
,
J. W.
Alegre
,
J. I.
Costilla
, and
B. R.
Pujada
, “
Magnetic skyrmion states in cobalt nanodisk
,”
J. Magn. Magn. Matter.
512
,
167041
(
2020
).

Supplementary Material

You do not currently have access to this content.