Field electron emission cathodes were constructed from knitted fabrics comprised entirely of carbon nanotube (CNT) fibers. The fabrics consisted of a top layer array of ∼2 mm high looped structures and a bottom layer that was 1 mm thick with a flat underlying surface. Field emission (FE) experiments were performed on 25.4 mm diameter CNT fabric cathodes in both direct current (DC) and pulsed voltage (PV) modes, and the results were compared to those obtained from a CNT film cathode. The DC measurements were performed at a maximum voltage of 1.5 kV. The CNT fabric cathode emitted 20 mA, which was an 8× increase over the emission current from the CNT film cathode. The DC results were analyzed using the corrected form of the Fowler–Nordheim FE theory initially developed by Murphy and Good, which allows for the determination of the formal emission area and effective gap-field enhancement factor. The PV experiments resulted in Ampere level emission currents from both CNT fabric and CNT film cathodes. For a 25 kV, 500 ns voltage pulse, the CNT fabric cathode emitted 4 A, which was 2× more current than the CNT film cathode. Scanning electron microscopy imaging after PV testing revealed that the fibers remained intact after >5000 pulses. These results indicate that knitted CNT fabrics offer a promising approach for developing large area, conformable, robust FE cathodes for vacuum electronic devices.

1.
T.
Buntin
,
M.
Abide
,
A.
Neuber
,
J.
Dickens
,
R.
Joshi
, and
J.
Mankowski
, “
Evaluation of explosive emission carbon fiber cathodes for high-power microwave devices
,”
IEEE Trans. Plasma Sci.
50
(
10
),
3459
3467
(
2022
).
2.
B. W.
Hoff
,
S.
Beeson
,
D.
Simon
,
W.
Tang
,
R.
Smith
,
S. C.
Exelby
,
N. M.
Jordan
,
A.
Sayir
,
R. M.
Gilgenbach
,
P. D.
Lepell
, and
T.
Montoya
, “
Brazed carbon fiber fabric field emission cathode
,”
Rev. Sci. Instrum.
91
,
064702
(
2020
).
3.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamiloglu
, “
Vircators, gyrotrons and electron cyclotron masers, and free-electron lasers
,” in
High Power Microwaves
(
CRC Press
,
Boca Raton, FL
,
2007
), pp.
435
458
.
4.
D.
Andreev
,
A.
Kuskov
, and
E.
Schamiloglu
, “
Review of the relativistic magnetron
,”
Matter Radiat. Extremes
4
(
6
),
067201
(
2019
).
5.
D.
Price
,
O.
Fittinghoff
,
J.
Benford
,
H.
Sze
, and
W.
Woo
, “
Operational features and microwave characteristics of the Vircator II experiment
,”
IEEE Trans. Plasma Sci.
16
(
2
),
177
184
(
1988
).
6.
H. A.
Davis
,
R. R.
Bartsch
,
L. E.
Thode
,
E. G.
Sherwood
, and
R. M.
Stringfield
, “
High-power microwave generation from a virtual cathode device
,”
Phys. Rev. Lett.
55
(
21
),
2293
(
1985
).
7.
M.
Abide
,
J.
Dickens
,
R. P.
Joshi
,
A.
Neuber
, and
J.
Mankowski
, “
Simulation of an S-band MILO with adjustable beam dump
,”
Plasma
2
(
2
),
138
155
(
2019
).
8.
A. K.
Li
,
Y. W.
Fan
,
B. L.
Qian
,
Z. C.
Zhang
, and
T.
Xun
, “
A low-outgassing-rate carbon fiber array cathode
,”
Chin. Phys. B
27
(
2
),
028401
(
2018
).
9.
Y. E.
Krasik
,
J. G.
Leopold
, and
U.
Dai
, “
A relativistic magnetron operated With permanent magnets
,”
IEEE Trans. Plasma Sci.
47
(
8
),
3997
4005
(
2019
).
10.
M.
Haworth
,
K.
Cartwright
,
J.
Luginsland
,
D.
Shiffler
, and
R.
Umstattd
, “
Improved electrostatic design for MILO cathodes
,”
IEEE Trans. Plasma Sci.
30
(
3
),
992
997
(
2002
).
11.
X.
Luo
,
W.
Weng
,
Y.
Liang
,
Z.
Hu
,
Y.
Zhang
,
J.
Yang
,
L.
Yang
,
S.
Yang
,
M.
Zhu
, and
H.-M.
Cheng
, “
Multifunctional fabrics of carbon nanotube fibers
,”
J. Mater. Chem. A
7
(
15
),
8790
8797
(
2019
).
12.
A.
Levitt
,
D.
Hegh
,
P.
Phillips
,
S.
Uzun
,
M.
Anayee
,
J. M.
Razal
,
Y.
Gogotsi
, and
G.
Dion
, “
3D knitted energy storage textiles using MXene-coated yarns
,”
Mater. Today
34
,
17
29
(
2020
).
13.
S. B.
Fairchild
,
J. S.
Bulmer
,
M.
Sparkes
,
J.
Boeckl
,
M.
Cahay
,
T.
Back
,
P.
Murray
,
G.
Gruen
,
M.
Lange
,
N. P.
Lockwood
,
F.
Orozco
,
W.
O'Neill
,
C.
Paukner
, and
K. K.
Koziol
, “
Field emission from laser cut CNT fibers and films
,”
J. Mater. Res.
29
(
3
),
392
402
(
2014
).
14.
D.
Shiffler
,
M.
Ruebush
,
M.
Haworth
, and
R.
Umstattd
, “
Carbon velvet field-emission cathode
,”
Rev. Sci. Instrum.
73
(
12
), 4358–4362 (
2002
).
15.
D.
Shiffler
,
M.
Haworth
,
K.
Cartwright
,
R.
Umstattd
,
M.
Ruebush
,
S.
Heidger
,
M.
LaCour
,
K.
Golby
,
D.
Sullivan
,
P.
Duselis
, and
J.
Luginsland
, “
Review of cold cathode research at the Air Force Research Laboratory
,”
IEEE Trans. Plasma Sci.
36
(
3
),
718
728
(
2008
).
16.
Y.
Sekii
and
T.
Hayashi
, “
Measurements of reflectance and thermal emissivity of a black surface created by electrostatic flocking with carbon-fiber piles
,”
IEEE Trans. Dielectr. Electr. Insul.
16
(
3
),
649
654
(
2009
).
17.
N.
Behabtu
,
C. C.
Young
,
D. E.
Tsentalovich
,
O.
Kleinerman
,
X.
Wang
,
A. W. K.
Ma
,
E. A.
Bengio
,
R. F.
ter Waarbeek
,
J. J.
de Jong
,
R. E.
Hoogerwerf
,
S. B.
Fairchild
,
J. B.
Ferguson
,
B.
Maruyama
,
J.
Kono
,
Y.
Talmon
,
Y.
Cohen
,
M. J.
Otto
, and
M. P.
Pasquali
, “
Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity
,”
Science
339
(
6116
),
182
186
(
2013
).
18.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamiloglu
, “
Introduction
,” in
High Power Microwaves
(
CRC Press
,
Boca Raton, FL
,
2007
), pp.
1
12
.
19.
D.
Mihalcea
,
L.
Faillace
,
J.
Hartzell
,
H.
Panuganti
,
S.
Boucher
,
A.
Murokh
,
P.
Piot
, and
J.
Thangaraj
, “
Measurement of Ampère-class pulsed electron beams via field emission from carbon-nanotube cathodes in a radiofrequency gun
,”
Appl. Phys. Lett.
107
(
3
),
033502
(
2015
).
20.
D.
Shiffler
,
O.
Zhou
,
C.
Bower
,
M.
LaCour
, and
K.
Golby
, “
A high-current, large-area, carbon nanotube cathode
,”
IEEE Trans. Plasma Sci.
32
(
5
),
2152
2154
(
2004
).
21.
G. Z.
Yue
,
Q.
Qiu
,
B.
Gao
,
Y.
Cheng
,
J.
Zhang
,
H.
Shimoda
,
S.
Chang
,
J. P.
Lu
, and
O.
Zhou
, “
Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode
,”
Appl. Phys. Lett.
81
(
2
),
355
357
(
2002
).
22.
F.
Le Pimpec
,
C.
Gough
,
V.
Chouhan
, and
S.
Kato
, “
Field emission from carbon nanotubes in DC and pulsed mode
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
660
(
1
),
7
14
(
2011
).
23.
S.
Fairchild
,
T.
de Assis
,
J.
Park
,
M.
Cahay
,
J.
Bulmer
,
D.
Tsentalovich
,
Y.
Ang
,
L.
Ang
,
J.
Ludwick
,
T.
Back
, and
M.
Pasquali
, “
Strongly anisotropic field emission from highly aligned carbon nanotube films
,”
J. Appl. Phys.
129
(
12
),
125103
(
2021
).
24.
L. W.
Taylor
,
O. S.
Dewey
,
R. J.
Headrick
,
N.
Komatsu
,
N. M.
Peraca
,
G.
Wehmeyer
,
J.
Kono
, and
M.
Pasquali
, “
Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers
,”
Carbon
171
,
689
694
(
2021
).
25.
M.
Cahay
,
P. T.
Murray
,
T. C.
Back
,
S.
Fairchild
,
J.
Boeckl
,
J.
Bulmer
,
K. K. K.
Koziol
,
G.
Gruen
,
M.
Sparkes
,
F.
Orozco
, and
W.
O'Neill
, “
Hysteresis during field emission from chemical vapor deposition synthesized carbon nanotube fibers
,”
Appl. Phys. Lett.
105
(
17
),
173107
(
2014
).
26.
S. B.
Fairchild
,
J.
Boeckl
,
T. C.
Back
,
J. B. K. H.
Ferguson
,
P. T.
Murray
,
B.
Maruyama
,
M. A.
Lange
,
M. M.
Cahay
,
N. N.
Behabtu
,
C. C.
Young
,
M. L. N. P.
Pasquali
,
K. L.
Averett
,
G.
Gruen
, and
D. E.
Tsentalovich
, “
Morphology dependent field emission of acid-spun carbon nanotube fibers
,”
Nanotechnology
26
(
10
),
105706
(
2015
).
27.
P.
Zhang
,
S. B.
Fairchild
,
T. C.
Back
, and
Y.
Luo
, “
Field emission from carbon nanotube fibers in varying anode-cathode gap with the consideration of contact resistance
,”
AIP Adv.
7
(
12
),
125203
(
2017
).
28.
P.
Zhang
,
J.
Park
,
S. B.
Fairchild
,
N. P.
Lockwood
,
Y. Y.
Lau
,
J.
Ferguson
, and
T. C.
Back
, “
Temperature comparison of looped and vertical carbon nanotube fibers during field emission
,”
Appl. Sci.
8
(
7
),
1175
(
2018
).
29.
K. E.
Miller
,
T.
Ziemba
,
J.
Prager
,
J.
Picard
, and
A.
Hashim
, “
Fast rise time and high voltage nanosecond pulses at high pulse
,” in
APS Annual Gaseous Electronics Meeting, Honolulu, HI
(American Physical Society,
2015
).
30.
R. H.
Fowler
and
L.
Nordheim
, “
Electron emission in intense electric fields
,”
Proc. R. Soc. London, Ser. A
119
(
781
),
173
181
(
1928
).
31.
R. G.
Forbes
and
J. H. B.
Deane
, “
Reformulation of the standard theory of Fowler–Nordheim tunnelling and cold field electron emission
,”
Proc. R. Soc., Ser. A
463
,
2907
2927
(
2007
).
32.
R. G.
Forbes
, “
Development of a simple quantitative test for lack of field emission orthodoxy
,”
Proc. R. Soc. London, Ser. A
469
(
2158
),
20130271
(
2013
).
33.
R. G.
Forbes
, “
Extraction of emission parameters for large-area field emitters, using a technically complete Fowler–Nordheim-type equation
,”
Nanotechnology
23
(
9
),
095706
(
2012
).
34.
D.
Shiffler
,
M.
LaCour
,
M.
Sena
,
M.
Mitchell
,
M.
Haworth
, and
K.
Hendricks
, “
Comparison of carbon fiber and cesium iodide-coated carbon fiber cathodes
,”
IEEE Trans. Plasma Sci.
28
(
3
),
517
522
(
2000
).
35.
P. T.
Murray
,
T. C.
Back
,
M. M.
Cahay
,
S. B.
Fairchild
,
B.
Maruyama
,
N. P.
Lockwood
, and
M.
Pasquali
, “
Evidence for adsorbate-enhanced field emission from carbon nanotube fibers
,”
Appl. Phys. Lett.
103
(
5
),
053113
(
2013
).
You do not currently have access to this content.