We present a combined Brillouin light scattering (BLS) and micromagnetic simulation investigation of the magnetic-field-dependent spin-wave spectra in a hybrid structure made of permalloy (NiFe) artificial spin-ice (ASI) systems, composed of stadium-shaped nanoislands, deposited on the top of an unpatterned permalloy film with a nonmagnetic spacer layer. The thermal spin-wave spectra were recorded by BLS as a function of the magnetic field applied along the symmetry direction of the ASI sample. Magneto-optic Kerr effect magnetometry was used to measure the hysteresis loops in the same orientation as the BLS measurements. The frequency and the intensity of several spin-wave modes detected by BLS were measured as a function of the applied magnetic field. Micromagnetic simulations enabled us to identify the modes in terms of their frequency and spatial symmetry and to extract information about the existence and strength of the dynamic coupling, relevant only to a few modes of a given hybrid system. Using this approach, we suggest a way to understand if the dynamic coupling between ASI and film modes is present or not, with interesting implications for the development of future three-dimensional magnonic applications and devices.

1.
X.
Zhou
,
G. L.
Chua
,
N.
Singh
, and
A. O.
Adeyeye
, “
Large area artificial spin ice and anti-spin ice Ni80Fe20 structures: Static and dynamic behavior
,”
Adv. Funct. Mater.
26
,
1437
1444
(
2016
).
2.
E.
Iacocca
,
S.
Gliga
,
R. L.
Stamps
, and
O.
Heinonen
, “
Reconfigurable wave band structure of an artificial square ice
,”
Phys. Rev. B
93
,
134420
(
2016
).
3.
S.
Gliga
,
A.
Kákay
,
R.
Hertel
, and
O. G.
Heinonen
, “
Spectral analysis of topological defects in an artificial spin-ice lattice
,”
Phys. Rev. Lett.
110
,
117205
(
2013
).
4.
M. B.
Jungfleisch
,
W.
Zhang
,
E.
Iacocca
,
J.
Sklenar
,
J.
Ding
,
W.
Jiang
,
S.
Zhang
,
J. E.
Pearson
,
V.
Novosad
,
J. B.
Ketterson
,
O.
Heinonen
, and
A.
Hoffmann
, “
Dynamic response of an artificial square spin ice
,”
Phys. Rev. B
93
,
100401
(
2016
).
5.
W.
Bang
,
F.
Montoncello
,
M. B.
Jungfleisch
,
A.
Hoffmann
,
L.
Giovannini
, and
J. B.
Ketterson
, “
Angular-dependent spin dynamics of a triad of permalloy macrospins
,”
Phys. Rev. B
99
,
014415
(
2019
).
6.
V. S.
Bhat
and
D.
Grundler
, “
Angle-dependent magnetization dynamics with mirror-symmetric excitations in artificial quasicrystalline nanomagnet lattices
,”
Phys. Rev. B
98
,
174408
(
2018
).
7.
V. S.
Bhat
,
F.
Heimbach
,
I.
Stasinopoulos
, and
D.
Grundler
, “
Magnetization dynamics of topological defects and the spin solid in a kagome artificial spin ice
,”
Phys. Rev. B
93
,
140401
(
2016
).
8.
D. M.
Arroo
,
J. C.
Gartside
, and
W. R.
Branford
, “
Sculpting the spin-wave response of artificial spin ice via microstate selection
,”
Phys. Rev. B
100
,
214425
(
2019
).
9.
T.
Dion
,
D. M.
Arroo
,
K.
Yamanoi
,
T.
Kimura
,
J. C.
Gartside
,
L. F.
Cohen
,
H.
Kurebayashi
, and
W. R.
Branford
, “
Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification
,”
Phys. Rev. B
100
,
054433
(
2019
).
10.
S.
Mamica
,
X.
Zhou
,
A.
Adeyeye
,
M.
Krawczyk
, and
G.
Gubbiotti
, “
Spin-wave dynamics in artificial anti-spin-ice systems: Experimental and theoretical investigations
,”
Phys. Rev. B
98
,
054405
(
2018
).
11.
Y.
Li
,
G.
Gubbiotti
,
F.
Casoli
,
F. J. T.
Gonçalves
,
S. A.
Morley
,
M. C.
Rosamond
,
E. H.
Linfield
,
C. H.
Marrows
,
S.
McVitie
, and
R. L.
Stamps
, “
Brillouin light scattering study of magnetic-element normal modes in a square artificial spin ice geometry
,”
J. Phys. D: Appl. Phys.
50
,
015003
(
2016
).
12.
S.
Lendinez
,
M. T.
Kaffash
, and
M. B.
Jungfleisch
, “
Emergent spin dynamics enabled by lattice interactions in a bicomponent artificial spin ice
,”
Nano Lett.
21
,
1921
1927
(
2021
).
13.
R.
Negrello
,
F.
Montoncello
,
M. T.
Kaffash
,
M. B.
Jungfleisch
, and
G.
Gubbiotti
, “
Dynamic coupling and spin-wave dispersions in a magnetic hybrid system made of an artificial spin-ice structure and an extended NiFe underlayer
,”
APL Mater.
10
,
091115
(
2022
).
14.
V. S.
Bhat
,
S.
Watanabe
,
K.
Baumgaertl
,
A.
Kleibert
,
M. A. W.
Schoen
,
C. A. F.
Vaz
, and
D.
Grundler
, “
Magnon modes of microstates and microwave-induced avalanche in kagome artificial spin ice with topological defects
,”
Phys. Rev. Lett.
125
,
117208
(
2020
).
15.
Y.
Li
,
G.
Gubbiotti
,
F.
Casoli
,
S. A.
Morley
,
F. J. T.
Gonçalves
,
M. C.
Rosamond
,
E. H.
Linfield
,
C. H.
Marrows
,
S.
McVitie
, and
R. L.
Stamps
, “
Thickness dependence of spin wave excitations in an artificial square spin ice-like geometry
,”
J. Appl. Phys.
121
,
103903
(
2017
).
16.
G.
Gubbiotti
,
Three-Dimensional Magnonics: Layered, Micro- and Nanostructures
(
Jenny Stanford Publishing
,
Singapore
,
2019
).
17.
E.
Iacocca
,
S.
Gliga
, and
O. G.
Heinonen
, “
Tailoring spin-wave channels in a reconfigurable artificial spin ice
,”
Phys. Rev. Appl.
13
,
044047
(
2020
).
18.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
, “
The design and verification of MuMax3
,”
AIP Adv.
4
,
107133
(
2014
).
19.
B. V.
de Wiele
and
F.
Montoncello
, “
A continuous excitation approach to determine time-dependent dispersion diagrams in 2D magnonic crystals
,”
J. Phys. D: Appl. Phys.
47
,
315002
(
2014
).
20.
G.
Gubbiotti
,
G.
Carlotti
,
T.
Okuno
,
M.
Grimsditch
,
L.
Giovannini
,
F.
Montoncello
, and
F.
Nizzoli
, “
Spin dynamics in thin nanometric elliptical permalloy dots: A Brillouin light scattering investigation as a function of dot eccentricity
,”
Phys. Rev. B
72
,
184419
(
2005
).
21.
W.
Rave
and
A.
Hubert
, “
Magnetic ground state of a thin-film element
,”
IEEE Trans. Magn.
36
,
3886
(
2000
).
22.
J.
García
,
A.
Thiaville
,
J.
Miltat
,
K.
Kirk
, and
J.
Chapman
, “
MFM imaging of patterned permalloy elements under an external applied field
,”
J. Magn. Magn. Mater.
242–245
,
1267
1269
(
2002
).
23.
S.
Hankemeier
,
R.
Frömter
,
N.
Mikuszeit
,
D.
Stickler
,
H.
Stillrich
,
S.
Pütter
,
E.
Vedmedenko
, and
H. P.
Oepen
, “
Magnetic ground state of single and coupled permalloy rectangles
,”
Phys. Rev. Lett.
103
,
147204
(
2009
).
24.
F.
Montoncello
,
L.
Giovannini
,
F.
Nizzoli
,
P.
Vavassori
, and
M.
Grimsditch
, “
Dynamic origin of first and second order phase transitions in magnetization reversal of elliptical nanodots
,”
Phys. Rev. B
77
,
214402
(
2008
).
25.
J. K.
Ha
,
R.
Hertel
, and
J.
Kirschner
, “
Micromagnetic study of magnetic configurations in submicron permalloy disks
,”
Phys. Rev. B
67
,
224432
(
2003
).
26.
S.
Tacchi
,
M.
Madami
,
G.
Gubbiotti
,
G.
Carlotti
,
A. O.
Adeyeye
,
S.
Neusser
,
B.
Botters
, and
D.
Grundler
, “
Magnetic normal modes in squared antidot array with circular holes: A combined Brillouin light scattering and broadband ferromagnetic resonance study
,”
IEEE Trans. Magn.
46
,
172
178
(
2010
).
27.
R.
Damon
and
J.
Eshbach
, “
Magnetostatic modes of a ferromagnet slab
,”
J. Phys. Chem. Solids
19
,
308
320
(
1961
).
28.
B. A.
Kalinikos
and
A. N.
Slavin
, “
Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions
,”
J. Phys. C: Solid State Phys.
19
,
7013
7033
(
1986
).
29.
W.
Bang
,
J.
Sturm
,
R.
Silvani
,
M. T.
Kaffash
,
A.
Hoffmann
,
J. B.
Ketterson
,
F.
Montoncello
, and
M. B.
Jungfleisch
, “
Influence of the vertex region on spin dynamics in artificial kagome spin ice
,”
Phys. Rev. Appl.
14
,
014079
(
2020
).
30.
F.
Montoncello
,
L.
Giovannini
,
F.
Nizzoli
,
P.
Vavassori
,
M.
Grimsditch
,
T.
Ono
,
G.
Gubbiotti
,
S.
Tacchi
, and
G.
Carlotti
, “
Soft spin waves and magnetization reversal in elliptical permalloy nanodots: Experiments and dynamical matrix results
,”
Phys. Rev. B
76
,
024426
(
2007
).
31.
W.
Bang
,
F.
Montoncello
,
M. T.
Kaffash
,
A.
Hoffmann
,
J. B.
Ketterson
, and
M. B.
Jungfleisch
, “
Ferromagnetic resonance spectra of permalloy nano-ellipses as building blocks for complex magnonic lattices
,”
J. Appl. Phys.
126
,
203902
(
2019
).
32.
Before 80 mT the role of the “fundamental mode” (i.e., no nodes, high intensity) is held by EMh, while the actual Fh mode has nodes (a phase change at the edges) and a lower average amplitude. After 80 mT, because the magnetization of the horizontal elements is oriented at about 45°, the EMh limits its amplitude at the edges only, while Fh acquires a larger amplitude in the center.
33.
D.
Kuźma
,
F.
Montoncello
,
P.
Sobieszczyk
,
A.
Wal
,
L.
Giovannini
, and
P.
Zieliński
, “
Spin wave propagation properties across configurational antiferro/ferro-magnetic transitions
,”
J. Appl. Phys.
124
,
223902
(
2018
).

Supplementary Material

You do not currently have access to this content.