Oxygen vacancy is crucial to the optical properties in In2O3, however, the single oxygen vacancy model fails to explain the observed multi-peak emission in the experiment. Herein, we have theoretically investigated the diversity of oxygen vacancy distribution, revealing the relationship between the defect configurations and the optical properties. Combining the first-principles calculations and bayesian regularized artificial neural networks, we demonstrate that the structural stability can be remarkably enhanced by multi-oxygen vacancy aggregation, which will evolve with the defect concentration and temperature. Notably, our results indicate that the single oxygen vacancy will induce the emission peaks centered at 1.35 eV, while multi-peak emission near 2.35 eV will be attributed to the distribution of aggregated double oxygen vacancies. Our findings provide a comprehensive understanding of multi-peak emission observed in In2O3, and the rules of the vacancy distribution may be extended for other metal oxides to modulate the optical properties in practice.

1.
M.
Katayama
, “
TFT-LCD technology
,”
Thin Solid Films
341
,
140
147
(
1999
).
2.
E.
Fortunato
,
D.
Ginley
,
H.
Hosono
, and
D. C.
Paine
, “
Transparent conducting oxides for photovoltaics
,”
MRS Bull.
32
,
242
247
(
2007
).
3.
O.
Bierwagen
, “
Indium oxide—A transparent, wide-band gap semiconductor for (opto)electronic applications
,”
Semicond. Sci. Technol.
30
,
024001
(
2015
).
4.
J.
Shi
,
J. Z.
nad Lu Yang
,
M.
Qu
,
D.-C.
Qi
, and
K. H. L.
Zhang
, “
Wide bandgap oxide semiconductors: From materials physics to optoelectronic devices
,”
Adv. Mater.
33
,
2006230
(
2021
).
5.
O.
Bierwagen
and
J. S.
Speck
, “
High electron mobility In2O3(001) and (111) thin films with nondegenerate electron concentration
,”
Appl. Phys. Lett.
97
,
072103
(
2010
).
6.
A.
Chen
,
K.
Zhu
,
H.
Zhong
,
Q.
Sha
, and
G.
Ge
, “
A new investigation of oxygen flow influence on ito thin films by magnetron sputtering
,”
Sol. Energy Mater. Sol. Cells
120
,
157
162
(
2013
).
7.
S.
Kaleemullaa
,
A. S.
Reddyc
,
S.
Uthannab
, and
P. S.
Reddy
, “
Physical properties of In2O3 thin films prepared at various oxygen partial pressures
,”
J. Alloy. Compd.
479
,
589
593
(
2009
).
8.
A. V. M.
Ali
and
D.
Kekuda
, “
Thickness and oxygen partial pressure dependence on optical band gap of indium oxide by reactive evaporation method
,”
IOP Conf. Ser.: Mater. Sci. Eng.
73
,
012027
(
2015
).
9.
X.
ping Shen
,
H.
jiang Liu
,
X.
Fan
,
Y.
Jiang
,
J.
ming Hong
, and
Z.
Xu
, “
Construction and photoluminescence of In2O3 nanotube array by CVD-template method
,”
J. Cryst. Growth
276
,
471
477
(
2005
).
10.
H.-L.
Wei
,
L.
Zhang
,
Z.-L.
Liu
, and
K.-L.
Yao
, “
Fabrication and photoluminescence characteristics of In2O3 nanohillocks
,”
Chin. Phys. B
20
,
118102
(
2011
).
11.
P.
Wu
,
Q.
Li
,
C.-X.
Zhao
,
D.-L.
Zhang
,
L.
fei Chi
, and
T.
Xiao
, “
Synthesis and photoluminescence property of indium oxide nanowires
,”
Appl. Surf. Sci.
255
,
3201
3204
(
2008
).
12.
N.
Beji
,
M.
Reghima
,
M.
Souli
, and
N.
Kamoun Turki
, “
Effect of nitrogen annealing on the structural, optical and photoluminescence properties of In2O3 thin films
,”
J. Alloy. Compd.
675
,
231
235
(
2016
).
13.
S.
Lany
and
A.
Zunger
, “
Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides
,”
Phys. Rev. Lett.
98
,
045501
(
2007
).
14.
P.
Agoston
,
P.
Erhart
,
A.
Klein
, and
K.
Albe
, “
Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide
,”
J. Phys.: Condens. Matter
21
,
455801
(
2009
).
15.
P.
Ágoston
,
K.
Albe
,
R. M.
Nieminen
, and
M. J.
Puska
, “
Intrinsic n-type behavior in transparent conducting oxides: A comparative hybrid-functional study of In2O3, SnO2, and ZnO
,”
Phys. Rev. Lett.
103
,
245501
(
2009
).
16.
S.
Limpijumnong
,
P.
Reunchan
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Hydrogen doping in indium oxide: An ab initio study
,”
Phys. Rev. B
80
,
193202
(
2009
).
17.
I.
Chatratin
,
F. P.
Sabino
,
P.
Reunchan
,
S.
Limpijumnong
,
J. B.
Varley
,
C. G.
Van de Walle
, and
A.
Janotti
, “
Role of point defects in the electrical and optical properties of In2O3
,”
Phys. Rev. Mater.
3
,
074604
(
2019
).
18.
J. H. W.
De Wit
,
G.
Van Unen
, and
M.
Lahey
, “
Electron concentration and mobility in In2O3
,”
J. Phys. Chem. Solids
38
,
819
824
(
1977
).
19.
J. H. W.
De Wit
, “
The high temperature behavior of In2O3
,”
J. Solid State Chem.
13
,
192
200
(
1975
).
20.
J. H. W.
De Wit
, “
Structural aspects and defect chemistry in In2O3
,”
J. Solid State Chem.
20
,
143
148
(
1977
).
21.
J.-Y.
Gan
,
X.-H.
Lu
,
J.-H.
Wu
,
S.-L.
Xie
,
T.
Zhai
,
M.-H.
Yu
,
Z.-S.
Zhang
,
Y.-C.
Mao
, and
Y.-X.
Tong
, “
Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes
,”
Sci. Rep.
3
,
1021
(
2013
).
22.
T.
Li
,
F.
Hong
,
K.
Yang
,
B.
Yue
,
N.
Tamura
,
H.
Wu
,
Z.
Cheng
, and
C.
Wang
, “
Metastable oxygen vacancy ordering state and improved memristive behavior in TiO2 crystals
,”
Sci. Bull.
65
,
631
639
(
2020
).
23.
M. C.
Sahu
,
S. K.
Mallik
,
S.
Sahoo
,
S. K.
Gupta
,
R.
Ahuja
, and
S.
Sahoo
, “
Effect of charge injection on the conducting filament of valence change anatase TiO2 resistive random access memory device
,”
J. Phys. Chem. Lett.
12
,
1876
1884
(
2021
).
24.
D. Z.
Gao
,
J.
Strand
,
M. S.
Munde
, and
A. L.
Shluger
, “
Mechanisms of oxygen vacancy aggregation in SiO2 and HfO2
,”
Front. Phys.
7
,
43
(
2019
).
25.
L.
Liu
,
C.-C.
He
,
J.
Zeng
,
Y.-H.
Peng
,
W.-Y.
Chen
,
Y.-J.
Zhao
, and
X.-B.
Yang
, “
Theoretical study of oxygen-vacancy distribution in In2O3
,”
J. Phys. Chem. C
125
,
7077
7085
(
2021
).
26.
D. J.
MacKay
, “
Bayesian neural networks and density networks
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
354
,
73
80
(
1995
).
27.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
28.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
29.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
30.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
31.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Erratum: ‘Hybrid functionals based on a screened coulomb potential,’
J. Chem. Phys.
124
,
219906
(
2006
).
32.
A.
Hellman
,
B.
Razaznejad
, and
B. I.
Lundqvist
, “
Potential-energy surfaces for excited states in extended systems
,”
J. Chem. Phys.
120
,
4593
4602
(
2004
).
33.
R. J.
Maurer
and
K.
Reuter
, “
Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT)
,”
J. Chem. Phys.
139
,
014708
(
2013
).
34.
X.
Jiang
,
Z.
Xu
,
Y.
Zheng
,
J.
Zeng
,
K.-Q.
Chen
, and
Y.
Feng
, “
Origin of broadband emission and large Stokes shift in antimony trisulfide
,”
J. Phys. Chem. Lett.
13
,
8026
8032
(
2022
).
35.
G. L. W.
Hart
and
R. W.
Forcade
, “
Algorithm for generating derivative structures
,”
Phys. Rev. B
77
,
224115
(
2008
).
36.
C.-C.
He
,
J.-H.
Liao
,
S.-B.
Qiu
,
Y.-J.
Zhao
, and
X.-B.
Yang
, “
Biased screening for multi-component materials with Structures of Alloy Generation and Recognition (SAGAR)
,”
Comput. Mater. Sci.
193
,
110386
(
2021
).
37.
S. B.
Zhang
,
S.-H.
Wei
, and
A.
Zunger
, “
Stabilization of ternary compounds via ordered arrays of defect pairs
,”
Phys. Rev. Lett.
78
,
4059
4062
(
1997
).
38.
L. D.
Landau
,
Statistical Physics
(
Butterworth-Heinemann
,
1980
).
39.
S.
Maintz
,
V. L.
Deringer
,
A. L.
Tchougréeff
, and
R.
Dronskowski
, “
LOBSTER: A tool to extract chemical bonding from plane-wave based DFT
,”
J. Comput. Chem.
37
,
1030
1035
(
2016
).
40.
R.
Nelson
,
C.
Ertural
,
J.
George
,
V. L.
Deringer
,
G.
Hautier
, and
R.
Dronskowski
, “
Lobster: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory
,”
J. Comput. Chem.
41
,
1931
1940
(
2020
).
41.
M.
Yu
and
D. R.
Trinkle
, “
Accurate and efficient algorithm for Bader charge integration
,”
J. Chem. Phys.
134
,
064111
(
2011
).

Supplementary Material

You do not currently have access to this content.