A multi-stimuli cooling cycle can be used to increase the cyclic caloric performance of multicaloric materials like Ni–Mn–In Heusler alloys. However, the use of uniaxial compressive stress as an additional external stimulus to a magnetic field requires good mechanical stability. Improvement in mechanical stability and strength by doping has been shown in several studies. However, doping is always accompanied by grain refinement and a change in transition temperature. This raises the question of the extent to which mechanical strength is related to grain refinement, transition temperature, or precipitates. This study shows a direct comparison between a single-phase Ni–Mn–In and a two-phase Gd-doped Ni–Mn–In alloy with the same transition temperature and grain size. It is shown that the excellent magnetocaloric properties of the Ni–Mn–In matrix are maintained with doping. The isothermal entropy change and adiabatic temperature change are reduced by only 15% in the two-phase Ni–Mn–In Heusler alloy compared to the single-phase alloy, which results from a slight increase in thermal hysteresis and the width of the transition. Due to the same grain size and transition temperature, this effect can be directly related to the precipitates. The introduction of Gd precipitates leads to a 100% improvement in mechanical strength, which is significantly lower than the improvement observed for Ni–Mn–In alloys with grain refinement and Gd precipitates. This reveals that a significant contribution to the improved mechanical stability in Gd-doped Heusler alloys is related to grain refinement.

1.
T.
Gottschall
,
K. P.
Skokov
,
M.
Fries
,
A.
Taubel
,
I.
Radulov
,
F.
Scheibel
,
D.
Benke
,
S.
Riegg
, and
O.
Gutfleisch
,
Adv. Energy Mater.
9
,
1901322
(
2019
).
2.
K. H. J.
Buschow
, editor,
Handbook of Magnetic Materials
, 1st ed. (
Elsevier
,
Amsterdam
,
2011
), Vol. 19.
3.
J.
Liu
,
T.
Gottschall
,
K. P.
Skokov
,
J. D.
Moore
, and
O.
Gutfleisch
,
Nat. Mater.
11
,
620
(
2012
).
4.
A.
Taubel
,
B.
Beckmann
,
L.
Pfeuffer
,
N.
Fortunato
,
F.
Scheibel
,
S.
Ener
,
T.
Gottschall
,
K. P.
Skokov
,
H.
Zhang
, and
O.
Gutfleisch
,
Acta Mater.
201
,
425
(
2020
).
5.
I.
Titov
,
M.
Acet
,
M.
Farle
,
D.
González-Alonso
,
L.
Mañosa
,
A.
Planes
, and
T.
Krenke
,
J. Appl. Phys.
112
,
073914
(
2012
).
6.
F.
Scheibel
,
T.
Gottschall
,
A.
Taubel
,
M.
Fries
,
K. P.
Skokov
,
A.
Terwey
,
W.
Keune
,
K.
Ollefs
,
H.
Wende
,
M.
Farle
,
M.
Acet
,
O.
Gutfleisch
, and
M. E.
Gruner
,
Energy Technol.
6
,
1397
(
2018
).
7.
O.
Gutfleisch
,
T.
Gottschall
,
M.
Fries
,
D.
Benke
,
I.
Radulov
,
K. P.
Skokov
,
H.
Wende
,
M.
Gruner
,
M.
Acet
,
P.
Entel
, and
M.
Farle
,
Philos. Trans. R. Soc. Math. Phys. Eng. Sci.
374
,
20150308
(
2016
).
8.
L.
Mañosa
,
D.
González-Alonso
,
A.
Planes
,
E.
Bonnot
,
M.
Barrio
,
J.-L.
Tamarit
,
S.
Aksoy
, and
M.
Acet
,
Nat. Mater.
9
,
478
(
2010
).
9.
10.
B.
Lu
,
P.
Zhang
,
Y.
Xu
,
W.
Sun
, and
J.
Liu
,
Mater. Lett.
148
,
110
(
2015
).
11.
A.
Gràcia-Condal
,
T.
Gottschall
,
L.
Pfeuffer
,
O.
Gutfleisch
,
A.
Planes
, and
L.
Mañosa
,
Appl. Phys. Rev.
7
,
041406
(
2020
).
12.
T.
Gottschall
,
A.
Gràcia-Condal
,
M.
Fries
,
A.
Taubel
,
L.
Pfeuffer
,
L.
Mañosa
,
A.
Planes
,
K. P.
Skokov
, and
O.
Gutfleisch
,
Nat. Mater.
17
,
929
(
2018
).
13.
L.
Pfeuffer
,
T.
Gottschall
,
T.
Faske
,
A.
Taubel
,
F.
Scheibel
,
A. Y.
Karpenkov
,
S.
Ener
,
K. P.
Skokov
, and
O.
Gutfleisch
,
Phys. Rev. Mater.
4
,
111401
(
2020
).
14.
Y. J.
Huang
,
Q. D.
Hu
,
N. M.
Bruno
,
J.-H.
Chen
,
I.
Karaman
,
J. H.
Ross
, and
J. G.
Li
,
Scr. Mater.
105
,
42
(
2015
).
15.
L.
Pfeuffer
,
A.
Gràcia-Condal
,
T.
Gottschall
,
D.
Koch
,
T.
Faske
,
E.
Bruder
,
J.
Lemke
,
A.
Taubel
,
S.
Ener
,
F.
Scheibel
,
K.
Durst
,
K. P.
Skokov
,
L.
Mañosa
,
A.
Planes
, and
O.
Gutfleisch
,
Acta Mater.
217
,
117157
(
2021
).
16.
W.
Ito
,
Y.
Imano
,
R.
Kainuma
,
Y.
Sutou
,
K.
Oikawa
, and
K.
Ishida
,
Metall. Mater. Trans. A
38
,
759
(
2007
).
17.
Z.
Yang
,
D. Y.
Cong
,
X. M.
Sun
,
Z. H.
Nie
, and
Y. D.
Wang
,
Acta Mater.
127
,
33
(
2017
).
18.
Y.
Zhang
,
J.
Liu
,
Q.
Zheng
,
J.
Zhang
,
W.
Xia
,
J.
Du
, and
A.
Yan
,
Scr. Mater.
75
,
26
(
2014
).
19.
G. F.
Dong
,
W.
Cai
,
Z. Y.
Gao
, and
J. H.
Sui
,
Scr. Mater.
58
,
647
(
2008
).
20.
C.
Tan
,
Z.
Tai
,
K.
Zhang
,
X.
Tian
, and
W.
Cai
,
Sci. Rep.
7
,
43387
(
2017
).
21.
X.
Zhang
,
J.
Sui
,
X.
Zheng
,
Z.
Yang
, and
W.
Cai
,
Mater. Sci. Eng. A
597
,
178
(
2014
).
22.
Y.
Feng
,
J. H.
Sui
,
Z. Y.
Gao
,
G. F.
Dong
, and
W.
Cai
,
J. Alloys Compd.
476
,
935
(
2009
).
23.
S. Y.
Yang
,
Y. D.
Liu
,
C. P.
Wang
,
Y.
Lu
,
J. M.
Wang
,
Z.
Shi
, and
X. J.
Liu
,
J. Alloys Compd.
619
,
498
(
2015
).
24.
H.
Li
,
X.
Meng
, and
W.
Cai
,
Mater. Sci. Eng. A
725
,
359
(
2018
).
25.
Y.
Wu
,
J.
Wang
,
C.
Jiang
, and
H.
Xu
,
Mater. Sci. Eng. A
646
,
288
(
2015
).
26.
L.
Pfeuffer
,
J.
Lemke
,
N.
Shayanfar
,
S.
Riegg
,
D.
Koch
,
A.
Taubel
,
F.
Scheibel
,
N. A.
Kani
,
E.
Adabifiroozjaei
,
L.
Molina-Luna
,
K. P.
Skokov
, and
O.
Gutfleisch
,
Acta Mater.
221
,
117390
(
2021
).
27.
W.
Gui
,
Y.
Qu
,
Y.
Cao
,
Y.
Zhao
,
C.
Liu
,
Q.
Zhou
,
J.
Chen
, and
Y.
Liu
,
J. Mater. Res. Technol.
19
, 4998 (2022).
28.
L.
Gao
,
J. H.
Sui
,
W.
Cai
, and
Z. Y.
Gao
,
Solid State Commun.
149
,
257
(
2009
).
29.
Q.
Shen
,
D.
Zhao
,
W.
Sun
,
Y.
Li
, and
J.
Liu
,
J. Alloys Compd.
696
,
538
(
2017
).
30.
Y.
Wu
,
J.
Wang
,
J.
Zhang
, and
Y.
Ma
,
Intermetallics
89
,
100
(
2017
).
31.
J.
Sui
,
X.
Zhang
,
L.
Gao
, and
W.
Cai
,
J. Alloys Compd.
509
,
8692
(
2011
).
32.
A.
Taubel
,
T.
Gottschall
,
M.
Fries
,
S.
Riegg
,
C.
Soon
,
K. P.
Skokov
, and
O.
Gutfleisch
,
Phys. Status Solidi B
255
,
1700331
(
2018
).
33.
T.
Krenke
,
M.
Acet
,
E. F.
Wassermann
,
X.
Moya
,
L.
Mañosa
, and
A.
Planes
,
Phys. Rev. B
73
, 174413 (
2006
).
34.
B.
Lu
,
X.
Cui
,
E.
Liu
,
X.
Feng
,
M.
Dong
,
Y.
Li
,
H.
Wang
, and
G.
Jin
,
Mater. Sci. Eng. A
736
,
130
(
2018
).
35.
J.
Rodríguez-Carvajal
,
Phys. B Condens. Matter
192
,
55
(
1993
).
36.
T.
Roisnel
and
J.
Rodríquez-Carvajal
,
Mater. Sci. Forum
378–381
,
118
(
2001
).
37.
X.-M.
Huang
,
L.-D.
Wang
,
H.-X.
Liu
,
H.-L.
Yan
,
N.
Jia
,
B.
Yang
,
Z.-B.
Li
,
Y.-D.
Zhang
,
C.
Esling
,
X.
Zhao
, and
L.
Zuo
,
Intermetallics
113
,
106579
(
2019
).
38.
Y.
Wu
,
J.
Wang
,
H.
Hua
,
C.
Jiang
, and
H.
Xu
,
J. Alloys Compd.
632
,
681
(
2015
).
39.
T.
Graf
,
C.
Felser
, and
S. S. P.
Parkin
,
Prog. Solid State Chem.
39
,
1
(
2011
).
40.
I.
Bulyk
,
Int. J. Hydrog. Energy
24
,
927
(
1999
).
41.
R. V.
Skolozdra
,
V. M.
Mandzyk
, and
L. G.
Aksel’rud
,
Kristallografiya
26
,
480
(
1981
).
42.
V.
Zaremba
,
M.
Dzevenko
,
R.
Pöttgen
, and
Y.
Kalychak
,
Z. Für Naturforschung B
74
,
613
(
2019
).
43.
N. V.
Rama Rao
,
V.
Chandrasekaran
, and
K. G.
Suresh
,
J. Appl. Phys.
108
,
043913
(
2010
).
44.
Y.
Wu
,
J.
Wang
,
Y.
He
,
H.
Wu
,
C.
Jiang
, and
H.
Xu
,
Acta Mater.
104
,
91
(
2016
).
45.
S.
Singh
,
P.
Kushwaha
,
F.
Scheibel
,
H.-P.
Liermann
,
S. R.
Barman
,
M.
Acet
,
C.
Felser
, and
D.
Pandey
,
Phys. Rev. B
92
, 020105 (
2015
).
46.
Q.
Wang
,
Z.
Li
,
S.
Pang
,
X.
Li
,
C.
Dong
, and
P.
Liaw
,
Entropy
20
,
878
(
2018
).
48.
D. A.
Joshi
,
C. V.
Tomy
,
D. S.
Rana
,
R.
Nagarajan
, and
S. K.
Malik
,
Solid State Commun.
137
,
225
(
2006
).
49.
T.
Krenke
,
E.
Duman
,
M.
Acet
,
E. F.
Wassermann
,
X.
Moya
,
L.
Mañosa
,
A.
Planes
,
E.
Suard
, and
B.
Ouladdiaf
,
Phys. Rev. B
75
, 104414 (
2007
).
50.
T.
Gottschall
,
K. P.
Skokov
,
F.
Scheibel
,
M.
Acet
,
M. G.
Zavareh
,
Y.
Skourski
,
J.
Wosnitza
,
M.
Farle
, and
O.
Gutfleisch
,
Phys. Rev. Appl.
5
, 024013 (
2016
).
51.
P. J.
Shamberger
and
F. S.
Ohuchi
,
Phys. Rev. B
79
,
144407
(
2009
).
52.
J.
Ortín
and
A.
Planes
,
Acta Metall.
36
,
1873
(
1988
).
53.
S.
Schwabe
,
R.
Niemann
,
A.
Backen
,
D.
Wolf
,
C.
Damm
,
T.
Walter
,
H.
Seiner
,
O.
Heczko
,
K.
Nielsch
, and
S.
Fähler
,
Adv. Funct. Mater.
31
,
2005715
(
2021
).
54.
B.
Beckmann
,
D.
Koch
,
L.
Pfeuffer
,
T.
Gottschall
,
A.
Taubel
,
E.
Adabifiroozjaei
,
O. N.
Miroshkina
,
S.
Riegg
,
T.
Niehoff
,
N. A.
Kani
,
M. E.
Gruner
,
L.
Molina-Luna
,
K. P.
Skokov
, and
O.
Gutfleisch
,
Acta Mater.
246
,
118695
(
2023
).
55.
T.
Gottschall
,
K. P.
Skokov
,
D.
Benke
,
M. E.
Gruner
, and
O.
Gutfleisch
,
Phys. Rev. B
93
, 184431 (
2016
).
You do not currently have access to this content.