In order to make the photothermal effect detectable from a sample with low optical absorption, an optically opaque layer must be applied on its surface. A model of optically induced temperature variations for such a structure is derived, with a very thin coating applied on the non-illuminated (back) side of the sample and neglecting heat flux dissipation in the coating. Validation of the model is performed by comparing the obtained results with the results for the corresponding two-layer structure model. The influence of optical absorption on surface temperature variations of both optically transparent and semi-transparent film, whether the film is a good or poor thermal conductor, is analyzed. It is shown that the effects of optical absorption in the coated structure can be observed through variations in the measured temperature, despite the low absorbance of the sample.

1.
H.
Vargas
and
L. C. M.
Miranda
, “
Photoacoustic and related photothermal techniques
,”
Phys. Rep.
161
(
2
),
43
101
(
1988
).
2.
For a review, see “
Photoacoustic and thermal wave phenomena in semiconductors
,” in
Progress in Photothermal and Photoacoustic Science and Technology
, edited by
A.
Mandelis
(
Elsevier
,
New York
,
1987
, 1992).
3.
S.
Bialkowski
,
Photothermal Spectroscopy Methods for Chemical Analysis
(
John Wiley
,
New York
,
1996
), ISBN: 978-0-471-57467-5.
4.
A.
Rosencwaig
and
A.
Gersho
, “
Theory of photoacoustic effect with solids
,”
J. Appl. Phys.
47
,
64
(
1976
).
5.
G.
Roussel
,
F.
Lepoutre
, and
L.
Bertrand
, “
Influence of thermoelastic bending on photoacoustic experiments related to measurements of thermal diffusivity of metals
,”
J. Appl. Phys.
54
,
2383
2391
(
1983
).
6.
D. M.
Todorovic
and
P. M.
Nikolic
, “
Carrier transport contribution to thermoelastic and electronic deformation in semiconductors
,” in
Semiconductors and Electronic Materials
, Progress in Photothermal and Photoacoustic Science and Technology, edited by
A.
Mandelis
and
P.
Hess
(
SPIE Press
,
Bellingham
,
2000
), Vol. IV, ISBN: 9780819435064.
7.
D. D.
Markushev
,
J.
Ordonez-Miranda
,
M. D.
Rabasovic
,
S.
Galovic
,
D. M.
Todorovic
, and
S. E.
Bialkowski
, “
Effect of the absorption coefficient of aluminium plates on their thermoelastic bending in photoacoustic experiments
,”
J. Appl. Phys.
117
,
245309
(
2015
).
8.
O. A.
Capeloto
,
G. V. B.
Lukasievicz
,
V. S.
Zanuto
,
L. S.
Herculano
,
N. E.
Souza Filho
,
A.
Novatski
,
L. C.
Malacarne
,
S. E.
Bialkowski
,
M. L.
Baesso
, and
N. G. C.
Astrath
, “
Pulsed photothermal mirror technique: Characterization of opaque materials
,”
Appl. Opt.
53
,
7985
7991
(
2014
).
9.
C. G. A.
Hoelen
and
F. F. M.
de Mul
, “
A new theoretical approach to photoacoustic signal generation
,”
J. Acoust. Soc. Am.
106
(
2
),
695
706
(
1999
).
10.
S.
Liang
,
B.
Lashkari
,
S. S. S.
Choi
,
V.
Ntziachristos
, and
A.
Mandelis
, “
The application of frequency-domain photoacoustics to temperature-dependent measurements of the grüneisen parameter in lipids
,”
Photoacoustics
11
,
56
64
(
2018
).
11.
J.-L.
Battaglia
,
E.
Ruffio
,
A.
Kusiak
,
C.
Pradere
,
E.
Abisset
,
S.
Chevalier
,
A.
Sommier
, and
J.-C.
Batsale
, “
The periodic pulse photothermal radiometry technique within the front face configuration
,”
Measurement
158
,
107691
(
2020
).
12.
F.
Gao
,
X.
Feng
,
R.
Zhang
,
S.
Liu
,
R.
Ding
,
R.
Kishor
, and
Y.
Zheng
, “
Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging
,”
Sci. Rep.
7
(
1
), 626 (
2017
).
13.
Y. G.
Gurevich
and
I.
Lashkevych
, “
Sources of fluxes of energy, heat, and diffusion heat in a bipolar semiconductor: Influence of nonequilibrium charge carriers
,”
Int. J. Thermophys.
34
,
341
(
2013
).
14.
Y. G.
Gurevich
,
G. N.
Logvinov
,
G. G.
de la Cruz
, and
G. E.
López
, “
Physics of thermal waves in homogeneous and inhomogeneous (two-layer) samples
,”
Int. J. Therm. Sci.
42
(
1
),
63
69
(
2003
).
15.
J. A.
Balderas-Lopez
and
A.
Mandelis
, “
Thermal diffusivity measurements in the photoacoustic open-cell configuration using simple signal normalization techniques
,”
J. Appl. Phys.
90
,
2273
(
2001
).
16.
A.
Mandelis
,
J.
Batista
,
J.
Gibkes
,
M.
Pawlak
, and
J.
Pelzl
, “
Noncontacting laser photocarrier radiometric depth profilometry of harmonically modulated band bending in the space-charge layer at doped SiO2-Si interfaces
,”
J. Appl. Phys.
97
(
8
),
083507
(
2005
).
17.
K. B.
Larson
and
K.
Koyama
, “
Measurement by the flash method of thermal diffusivity, heart capacity, and thermal conductivity in two-layer composite samples
,”
J. Appl. Phys.
39
(
9
),
4408
4416
(
1968
).
18.
S.
Galović
and
D.
Kostoski
, “
Photothermal wave propagation in media with thermal memory
,”
J. Appl. Phys.
93
(
5
),
3063
3070
(
2003
).
19.
S.
Galović
,
Z.
Šoškić
,
M.
Popović
,
D.
Čevizović
, and
Z.
Stojanović
, “
Theory of photoacoustic effect in media with thermal memory
,”
J. Appl. Phys.
116
(
2
),
024901
(
2014
).
20.
Z.
Šoškić
,
S.
Ćirić-Kostić
, and
S.
Galović
, “
An extension to the methodology for characterization of thermal properties of thin solid samples by photoacoustic techniques
,”
Int. J. Therm. Sci.
109
,
217
230
(
2016
).
21.
K.
Strzałkowski
,
D.
Dadarlat
,
M.
Streza
, and
J.
Zakrzewski
, “
Thermal characterization of ZnBeMnSe mixed compounds by means of photopyroelectric and lock-in thermography methods
,”
Appl. Phys. A
119
(
3
),
1165
1171
(
2015
).
22.
J.
Zakrzewski
,
M.
Maliński
,
L.
Chrobak
, and
M.
Pawlak
, “
Comparison of theoretical basics of microphone and piezoelectric photothermal spectroscopy of semiconductors
,”
Int. J. Thermophys.
38
, 2 (
2016
).
23.
M. N.
Popovic
,
D. D.
Markushev
,
M. V.
Nesic
,
M. I.
Jordovic-Pavlovic
, and
S. P.
Galovic
, “
Optically induced temperature variations in a two-layer volume absorber including thermal memory effects
,”
J. Appl. Phys.
129
,
015104
(
2021
).
24.
D. K.
Markushev
,
D. D.
Markushev
,
S.
Galović
 et al, “
The surface recombination velocity and bulk lifetime influences on photogenerated excess carrier density and temperature distributions in n-type silicon excited by a frequency-modulated light source
,”
Facta Univ. Ser: Electron. Energ.
31
(
2
),
313
328
(
2018
).
25.
D. K.
Markushev
,
D. D.
Markushev
,
S. M.
Aleksic
 et al, “
Effects of the photogenerated excess carriers on the thermal and elastic properties of n-type silicon excited with a modulated light source: Theoretical analysis
,”
J. Appl. Phys.
126
,
185102
(
2019
).
26.
M. N.
Popovic
,
M. V.
Nesic
,
M.
Zivanov
,
D. D.
Markushev
, and
S. P.
Galovic
, “
Photoacoustic response of a transmission photoacoustic configuration for two-layer samples with thermal memory
,”
Opt. Quantum Elect.
50
(
9
),
330
(
2018
).
27.
A.
Somer
,
F.
Camilotti
,
G. F.
Costa
,
C.
Bonardi
,
A.
Novatski
,
A. V. C.
Andrade
,
V. A.
Kozlowski
, and
G. K.
Cruz
, “
The thermoelastic bending and thermal diffusion processes influence on photoacoustic signal generation using open photoacoustic cell technique
,”
J. Appl. Phys.
114
(
6
),
063503
(
2013
).
28.
J. L.
Pichardo
and
J. J.
Alvarado-Gil
, “
Open photoacoustic cell determination of the thermal interface resistance in two layer systems
,”
J. Appl. Phys.
89
(
7
),
4070
4075
(
2001
).
29.
J. L.
Pichardo-Molina
and
J. J.
Alvarado-Gil
, “
Heat diffusion and thermolastic vibration influence on the signal of an open photoacoustic cell for two layer systems
,”
J. Appl. Phys.
95
(
11
),
6450
6456
(
2004
).
30.
J.
Alvarado-Gil
,
O.
Zelaya-Angel
,
F.
Sánchez-Sinencio
,
H.
Vargas
, and
J.
Lucio
, “
Photoacoustic thermal characterization of a semiconductor (CdTe)-glass two layer system
,”
Vacuum
46
(
8–10
),
883
886
(
1995
).
31.
J.
Ordóñez-Miranda
and
J. J.
Alvarado-Gil
, “
Effective thermal properties of multilayered systems with interface thermal resistance in a hyperbolic heat transfer model
,”
Int. J. Thermophys.
31
(
4–5
),
900
925
(
2010
).
32.
J.
Ordóñez-Miranda
and
J. J.
Alvarado-Gil
, “
Frequency-modulated hyperbolic heat transport and effective thermal properties in layered systems
,”
Int. J. Therm. Sci.
49
(
1
),
209
217
(
2010
).
33.
M.
Nesic
,
M.
Popovic
, and
S.
Galovic
, “
Developing the techniques for solving the inverse problem in photoacoustics
,”
Atoms
7
(
1
),
24
(
2019
).
34.
M.
Nesic
,
M.
Popovic
,
K.
Djordjevic
,
V.
Miletic
,
M.
Jordovic Pavlovic
,
D.
Markushev
, and
S.
Galovic
, “
Development and comparison of the techniques for solving the inverse problem in photoacoustic characterization of semiconductors
,”
Opt. Quantum Electron.
53
(
7
),
381
(
2021
).
35.
M.
Lukić
,
Z.
Ćojbašić
, and
D. D.
Markushev
, “
Trace gases analysis in pulsed photoacoustics based on swarm intelligence optimization
,”
Opt. Quantum Electron.
54
,
674
(
2022
).
36.
M.
Lukić
,
Ž.
Ćojbašić
,
M. D.
Rabasović
,
D. D.
Markushev
, and
D. M.
Todorović
, “
Genetic algorithms application for the photoacoustic signal temporal shape analysis and energy density spatial distribution calculation
,”
Int. J. Thermophys.
34
(
8–9
),
1466
1472
(
2013
).
37.
M. V.
Nesic
,
M. N.
Popovic
,
S. P.
Galovic
,
K. L.
Djordjevic
,
M. I.
Jordovic-Pavlovic
,
V. V.
Miletic
, and
D. D.
Markushev
, “
Estimation of linear expansion coefficient and thermal diffusivity by photoacoustic numerical self-consistent procedure
,”
J. Appl. Phys.
131, 105104 (
2022
).
38.
K. L.
Djordjevic
,
D.
Milicevic
,
S. P.
Galovic
,
E.
Suljovrujic
,
S. K.
Jacimovski
,
D.
Furundzic
, and
M.
Popovic
, “
Photothermal response of polymeric materials including complex heat capacity
,”
Int. J. Thermophys.
43
(
5
),
68
(
2022
).
39.
К. L.
Djordjevic
,
M. I.
Jordović-Pavlović
,
ŽМ
Ćojbašić
,
S. P.
Galović
,
M. N.
Popović
,
M. V.
Nešić
, and
D. D.
Markushev
, “
Influence of data scaling and normalization on overall neural network performances in photoacoustics
,”
Opt. Quantum Electron.
54
,
501
(
2022
).
40.
K. L.
Djordjevic
,
S. P.
Galović
,
ŽМ
Ćojbašić
,
D. D.
Markushev
,
D. K.
Markushev
,
S. M.
Aleksic
, and
D. S.
Pantic
, “
Electronic characterization of plasma-thick n-type silicon using neural networks and photoacoustic response
,”
Opt. Quantum Electron.
54
(
8
), 485 (
2022
).
41.
К. L.
Djordjević
,
S. P.
Galović
,
M. N.
Popović
,
M. V.
Nešić
,
I. P.
Stanimirović
,
Z. I.
Stanimirović
, and
D. D.
Markushev
, “
Use neural network in photoacoustic measurement of thermoelastic properties of aluminum foil
,”
Measurement
199
, 111537 (
2022
).
42.
К. L.
Djordjevic
,
D. D.
Markushev
,
Ž. М.
Ćojbašić
, and
S. P.
Galović
, “
Inverse problem solving in semiconductor photoacoustics by neural networks
,”
Inverse Probl. Sci. Eng.
29(2), 248–262 (2021).
43.
L.
Olenka
,
E. S.
Nogueiran
,
A. N.
Medina
,
M. L.
Baesso
,
A. C.
Bento
,
E. C.
Muniz
, and
A. F.
Rubira
, “
Photoacoustic study of PET films and fibers dyed in supercritical CO2 reactor
,”
Rev. Sci. Instrum.
74
(
1
),
328
330
(
2003
).
44.
J.
Medina
,
Y. G.
Gurevich
,
G. N.
Logvinov
,
P.
Rodriguez
, and
G. G.
de la Cruz
, “
Photoacoustic investigation of the effective diffusivity of two-layer semiconductors
,”
Mol. Phys.
100
(
19
),
3133
3138
(
2002
).
45.
G. G.
de la Cruz
and
Y. G.
Gurevich
, “
Thermal diffusion of a two-layer system
,”
Phys. Rev. B
51
(
4
),
2188
2192
(
1995
).
46.
M. N.
Aguirre
,
G. G.
de la Cruz
,
Y. G.
Gurevich
,
G. N.
Logvinov
, and
M. N.
Kasyanchuk
, “
Heat diffusion in Two-layer structures: Photoacoustic experiments
,”
Phys. Status Solidi B
220
(
1
),
781
787
(
2000
).
47.
A. M.
Mansanares
,
H.
Vargas
,
F.
Galembeck
,
J.
Buijs
, and
D.
Bicanic
, “
Photoacoustic characterization of a two-layer system
,”
J. Appl. Phys.
70
(
11
),
7046
7050
(
1991
).
48.
D. K.
Markushev
,
D. D.
Markushev
,
S. M.
Aleksić
,
D. S.
Pantić
,
S. P.
Galović
,
D. V.
Lukić
, and
J.
Ordonez-Miranda
, “
Enhancement of the thermoelastic component of the photoacoustic signal of silicon membranes coated with a thin TiO2 film
,”
J. Appl. Phys.
131
,
085105
(
2022
).
49.
S. M.
Aleksić
,
D. K.
Markushev
,
D. D.
Markushev
 et al, “
Photoacoustic analysis of illuminated Si-TiO2 sample bending along the heat-flow axes
,”
Silicon
14, 9853–9861 (
2022
).
50.
V. V.
Miletic
,
K. L.
Djordjevic
,
D. D.
Markushev
,
M. N.
Popovic
,
S. P.
Galovic
,
D. S.
Milicevic
, and
M. V.
Nesic
, Photoacoustic Characterization of PLLA Samples at Different Crystallinity Levels (
2020
). 19th INFOTEH-Jahorina.
51.
V. V.
Miletić
,
D. K.
Markushev
,
D. D.
Markushev
,
M. N.
Popovic
,
K. L.
Djordjevic
,
S. P.
Galovic
, and
M. V.
Nesic
, Ispitivanje uticaja nanetog sloja boje na površinske temperaturske varijacije laserski sinterovanog poliamida (
2022
) 21th INFOTEH-Jahorina.
52.
M. V.
Nesic
,
V. V.
Miletić
,
D. S.
Milicevic
,
K.
Djordjevic
,
M.
Jordovic-Pavlovic
,
D. K.
Markushev
, and
M. N.
Popovic
, Thermoelastic and optical properties of PLLA estimated by photoacoustic measurements (
2022
) ICPPP21—Bled, Slovenia.
53.
V. A.
Sablikov
and
V. B.
Sandomirskii
, “
The photoacoustic effect in semiconductors
,”
Phys. Status Solidi B
120
,
471
(
1983
).
54.
D.
Čevizović
,
Z.
Ivić
,
S.
Galović
,
A.
Reshetnyak
, and
A.
Chizhov
, “
On the vibron nature in the system of two parallel macromolecular chains: The influence of interchain coupling
,”
Physica B
490
,
9
15
(
2016
).
55.
D.
Čevizović
,
S.
Galović
,
A.
Reshetnyak
, and
Z.
Ivić
, “
The vibron dressing in α-helicoidal macromolecular chains
,”
Chin. Phys. B
22
(
6
),
060501
(
2013
).
56.
D.
Čevizović
,
S.
Galović
,
S.
Zeković
, and
Z.
Ivić
, “
Boundary between coherent and noncoherent small polaron motion: Influence of the phonon hardening
,”
Physica B
404
(
2
),
270
274
(
2009
).
57.
Z.
Ivić
,
S.
Zeković
,
D.
Čevizović
, and
D.
Kostić
, “
Phonon hardening due to the small-polaron effect
,”
Physica B
355
(
1–4
),
417
426
(
2005
).
58.
D. D.
Joseph
and
L.
Preziosi
, “
Heat waves
,”
Rev. Mod. Phys.
61
,
41
(
1989
).
59.
D. D.
Joseph
and
L.
Preziosi
, “
Addendum to the paper ‘Heat waves’ [Rev.: Mod. Phys. 61, 41 (1989)]
,”
Rev. Mod. Phys.
62
,
375
(
1990
).
60.
I. A.
Novikov
, “
Harmonic thermal waves in materials with thermal memory(1997)
,”
J. Appl. Phys.
81
(
3
),
1067
1072
(
1997
).
You do not currently have access to this content.