We have studied THz heterodyne detection in sub-micrometer MgB2 hot electron bolometer (HEB) mixers based on superconducting MgB2 films of 5nm (HEB-A), corresponding to a critical temperature (Tc) of 33.9 K, and 7nm (HEB-B), corresponding to a Tc of 38.4 K. We have measured a double sideband (DSB) receiver noise temperature of 2590 K for HEB-A and 2160 K for HEB-B at 1.6 THz and 5 K. By correcting for optical losses, both HEBs show receiver noise temperatures of ∼1600 K referenced to the front of anti-reflection (AR)-coated Si lenses. An intermediate frequency (IF) noise bandwidth of 11 GHz has been measured for both devices. The required local oscillator (LO) power is about 13 μW for both HEBs. We have also measured a DSB receiver noise temperature of 3290 K at 2.5 THz and 5 K but with an AR-coated lens optimized for 1.6 THz. Besides, we have observed a step-like structure in current voltage (IV) curves, which becomes weaker when the LO power increases and observable only in their differential resistance. Such a correlated structure appears also in the receiver output power as a function of voltage, which is likely due to electronic inhomogeneities intrinsic to the variations in the thickness of the MgB2 films. Different behavior in the IV curves around the low bias voltages, pumped with the same LO power at 1.6 and 5.3 THz, was observed for HEB-B, suggesting the presence of a high-energy σ-gap in the MgB2 film.

1.
E. M.
Gershenzon
,
G. N.
Gol’tsman
,
I. G.
Gogidze
,
Y. P.
Gusev
,
A. I.
Elant’ev
,
B. S.
Karasik
, and
A. D.
Semenov
, “
Millimeter and submillimeter range mixer based on electron heating of superconducting films in the resistive state
,”
Sov. Phys. Supercond.
3
(10),
2413
–2160 (
1990
).
2.
H.-W.
Hubers
, “
Terahertz heterodyne receivers
,”
IEEE J. Sel. Top. Quantum Electron.
14
,
378
391
(
2008
).
3.
F. F. S.
van der Tak
,
S. C.
Madden
,
P.
Roelfsema
,
L.
Armus
,
M.
Baes
,
J.
Bernard-Salas
 et al, “
Probing the baryon cycle of galaxies with SPICA Mid- and far-infrared observations
,”
Publ. Astron. Soc. Aust.
35
,
E002
(
2018
).
4.
C.
Risacher
,
R.
Gusten
,
J.
Stutzki
,
H.-W.
Hubers
,
D.
Buchel
,
U.
Graf
 et al, “
First supra-THz heterodyne array receivers for astronomy with the SOFIA observatory
,”
IEEE Trans. Terahertz Sci. Technol.
6
(
2
),
199
211
(
2016
).
5.
D. J.
Hayton
,
J. L.
Kloosterman
,
Y.
Ren
,
T. Y.
Kao
,
J. R.
Gao
,
T. N.
Klapwijk
,
Q.
Hu
,
C. K.
Walker
, and
J. L.
Reno
, “
A 4.7 THz heterodyne receiver for a balloon borne telescope
,”
Proc. SPIE
9153
,
91531R
(
2014
).
6.
T.
de Graauw
,
F.
Helmich
,
T. G.
Phillips
,
J.
Stutzki
,
E.
Caux
,
N. D.
Whyborn
 et al, “
The herschel-heterodyne instrument for the far-infrared (HIFI)
,”
Astron. Astrophys.
518
,
L6
(
2010
).
7.
C.
Walker
,
C.
Kulesa
,
A.
Young
,
W.
Verts
,
J. R.
Gao
,
Q.
Hu
,
J.
Silva
,
B.
Mirzaei
,
W.
Laauwen
,
J.
Hesler
,
C.
Groppi
, and
A.
Emrich
, “
Gal/Xgal U/LDB spectroscopic/ stratospheric THz observatory: GUSTO
,” in
Proceedings of the SPIE 12190, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI
(
SPIE
,
2022
), p.
121900E
.
8.
J. V.
Siles
,
J.
Pineda
,
J. H.
Kawamura
,
P. F.
Goldsmith
,
P. N.
Bernasconi
,
C. E.
Groppi
,
J. O.
Gundersen
,
L. D.
Anderson
,
R.
Assef
,
C.
Battersby
,
L. I.
Cleeves
,
K. K.
Davis
,
T.
Diaz-Santos
,
D. J.
Hayton
,
R.
Herrera-Camus
,
R.
Klessen
,
W. D.
Langer
,
C.
Lisse
,
P. D.
Mauskopf
,
I.
Mehdi
,
J. R.
Olson
,
L.
Pagani
,
M.
Roellig
,
N.
Schneider
,
Y.
Seo
, and
A.
Tielens
, “
ASTHROS: The astrophysics stratospheric telescope for high spectral resolution observations at submillimeter-wavelengths
,” in
Proceedings of the SPIE 11445, Ground-Based and Airborne Telescopes VIII
(
SPIE
,
2020
), p.
114453G
.
9.
C. K.
Walker
,
G.
Chin
,
S.
Aalto
,
C. M.
Anderson
,
J. W.
Arenberg
,
C.
Battersby
 et al, “
Orbiting astronomical satellite for investigating stellar systems (OASIS): ‘following water from galaxies, through protostellar systems, to oceans,’
Proc. SPIE
11820
,
118200O
(
2021
).
10.
D.
Rigopoulou
,
C.
Pearson
,
B.
Ellison
,
M.
Wiedner
,
V.
Ossenkopf Okada
 et al, “
The far-infrared spectroscopic surveyor (FIRSS)
,”
Exp. Astron. Springer Link
51
(
3
),
699
728
(
2021
).
11.
J. L.
Kloosterman
,
D. J.
Hayton
,
Y.
Ren
,
T. Y.
Kao
,
J. N.
Hovenier
,
J. R.
Gao
,
T. M.
Klapwijk
,
Q.
Hu
,
C. K.
Walker
, and
J. L.
Reno
, “
Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator
,”
Appl. Phys. Lett.
102
,
011123
(
2013
).
12.
Y. P.
Gousev
,
G. N.
Gol’tsman
,
A. D.
Semenov
,
E. M.
Gershenzon
,
R. S.
Nebosis
,
M. A.
Heusinger
, and
K. F.
Renk
, “
Broadband ultrafast superconducting NbN detector for electromagnetic radiation
,”
J. Appl. Phys.
75
,
3695
3697
(
1994
).
13.
D. M. A.
Aminou
,
J. L.
Bézy
,
R.
Meynart
,
P.
Blythe
,
S.
Kraft
,
I.
Zayer
 et al, “
Meteosat third generation (MTG) critical technology pre-development activities
,”
Proc. SPIE
7474
,
747407
(
2009
).
14.
H.
Linz
,
H.
Beuther
,
M.
Gerin
,
J. R.
Goicoechea
,
F.
Helmich
,
O.
Krause
 et al, “
Bringing high spatial resolution to the far-infrared
,”
Exp. Astron.
51
,
661
697
(
2021
).
15.
J. W.
Waters
,
L.
Froidevaux
,
R. S.
Harwood
,
R. F.
Jarnot
,
H. M.
Pickett
,
W. G.
Read
 et al, “
The earth observing system microwave limb sounder (EOS MLS) on the aura satellite
,”
IEEE Trans. Geosci. Remote Sens.
44
(
5
),
1075
1092
(
2006
).
16.
I.
Mehdi
,
J. V.
Siles
,
C.
Lee
, and
E.
Schlecht
, “
THz diode technology: Status, prospects, and applications
,”
Proc. IEEE
105
(
6
),
990
1007
(
2017
).
17.
R. G.
Ladret
,
A. J.
Kreisler
, and
A. F.
Dégardin
, “
YBCO-constriction hot spot modeling: DC and RF descriptions for HEB THz mixer noise temperature and conversion gain,” in IEEE trans
,”
Appl. Supercond.
25
(
3
),
1
5
(
2015
).
18.
Y.
Xu
,
M.
Khafizov
,
L.
Satrapinsky
,
P.
Kus
,
A.
Plecenik
, and
R.
Sobolewski
, “
Time-resolved photoexcitation of the superconducting two-gap state in MgB2 thin films
,”
Phys. Rev. Lett.
91
,
197004
(
2003
).
19.
X. X.
Xi
, “
Two-band superconductor magnesium diboride
,”
Rep. Prog. Phys.
71
,
116501
(
2008
).
20.
M.
Ortolani
,
P.
Dore
,
D.
Di Castro
,
A.
Perucchi
,
S.
Lupi
,
V.
Ferrando
,
M.
Putti
,
I.
Pallecchi
,
C.
Ferdeghini
, and
X. X.
Xi
, “
Two-band parallel conductivity at terahertz frequencies in the superconducting state of MgB2
,”
Phys. Rev. B
77
,
100507(R)
(
2008
).
21.
N.
Acharya
,
M. A.
Wolak
,
T.
Tan
,
N.
Lee
,
A. C.
Lang
,
M.
Taheri
 et al, “
Mgb2 ultrathin films fabricated by hybrid physical chemical deposition and ion milling
,”
APL Mater.
4
,
086114
(
2016
).
22.
R. A.
Kaindl
,
M. A.
Carnahan
,
J.
Orenstein
,
D. S.
Chemla
,
H. M.
Christen
,
H.-Y.
Zhai
,
M.
Paranthaman
, and
D. H.
Lowndes
, “
Far-infrared optical conductivity Gap in superconducting MgB2 films
,”
Phys. Rev. Lett.
88
,
027003
(
2001
).
23.
Y.
Cui
,
J. E.
Jones
,
A.
Beckley
,
R.
Donovan
,
D.
Lishego
,
E.
Maertz
,
A. V.
Pogrebnyakov
,
P.
Orgiani
,
J. M.
Redwing
, and
X. X.
Xi
, “
Degradation of MgB2 thin films in water
,”
IEEE Trans. Appl. Supercond.
15
,
224
227
(
2005
).
24.
K.
Nakayama
 et al, “Precise measurements of optical constants of SiC in 40 to 120 μm wavelength region,” in
35th International Conference on Infrared, Millimeter, and Terahertz Waves
(IEEE, Piscataway, NJ,
2010
), pp.
1
2
. Note that the reflective index for SiC was found to increase slightly with increasing the frequency that is different from pure Si.
25.
M.
Naftaly
,
J. F.
Molloy
,
B.
Magnusson
,
Y. M.
Andreev
, and
G. V.
Lanskii
, “
Silicon carbide—A high-transparency nonlinear material for THz applications
,”
Opt. Express
24
,
2590
2595
(
2016
).
26.
S.
Cherednichenko
,
V.
Drakinskiy
,
K.
Ueda
, and
M.
Naito
, “
Terahertz mixing in MgB2 microbolometers
,”
Appl. Phys. Lett.
90
,
023507
(
2007
).
27.
S.
Bevilacqua
,
E.
Novoselov
,
S.
Cherednichenko
,
H.
Shibata
, and
Y.
Tokura
, “
Mgb2 hot-electron bolometer mixers at terahertz frequencies
,”
IEEE Trans. Appl. Supercond.
25
(
3
),
1
4
(
2015
).
28.
E.
Novoselov
,
S.
Bevilacqua
,
S.
Cherednichenko
,
H.
Shibata
, and
Y.
Tokura
, “
Effect of the critical and operational temperatures on the sensitivity of MgB2 HEB mixers
,”
IEEE Trans. Terahertz Sci. Technol.
6
(
2
),
238
244
(
2016
).
29.
D.
Cunnane
,
J. H.
Kawamura
,
M. A.
Wolak
,
N.
Acharya
,
T.
Tan
,
X. X.
Xi
 et al, “
Characterization of MgB2 superconducting Hot electron bolometers
,”
IEEE Trans. Appl. Supercond.
25
(
3
),
1
6
(
2015
).
30.
E.
Novoselov
,
N. M.
Zhang
, and
S.
Cherednichenko
, “
Mgb2 hot electron bolometer mixers for THz heterodyne instruments
,”
Proc. SPIE
9914
,
99141N
(
2016
).
31.
D.
Cunnane
,
J. H.
Kawamura
,
M. A.
Wolak
,
N.
Acharya
,
X. X.
Xi
, and
B. S.
Karasik
, “
Optimization of parameters of MgB2 hot-electron bolometers
,”
IEEE Trans. Appl. Supercond.
27
(
4
),
1
5
(
2017
).
32.
E.
Novoselov
and
S.
Cherednichenko
, “
Low noise terahertz MgB2 hot-electron bolometer mixers with an 11 GHz bandwidth
,”
Appl. Phys. Lett.
110
,
032601
(
2017
).
33.
N.
Acharya
,
E.
Novoselov
, and
S.
Cherednichenko
, “
Analysis of the broad IF-band performance of MgB2 HEB mixers
,”
IEEE Trans. Terahertz Sci. Technol.
9
,
565
571
(
2019
).
34.
Y.
Gan
,
B.
Mirzaei
,
J. R. G. D
Silva
,
J.
Chang
,
S.
Cherednichenko
,
F.
van der Tak
, and
J. R.
Gao
, “
Low noise MgB2 hot electron bolometer mixer operated at 5.3 THz and at 20 K
,”
Appl. Phys. Lett.
119
,
202601
(
2021
).
35.
C. A.
Curwen
,
D. P.
Cunnane
,
J. H.
Kawamura
,
D. J.
Hayton
, and
W.
Yang
, “THz heterodyne system using novel mixer and local oscillator devices,” in
47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)
(IEEE, Piscataway, NJ,
2022
), pp.
1
2
.
36.
W.
Zhang
,
P.
Khosropanah
,
J. R.
Gao
,
E. L.
Kollberg
,
K. S.
Yngvesson
,
T.
Bansal
,
R.
Barends
, and
T. M.
Klapwijk
, “
Quantum noise in a terahertz hot electron bolometer mixer
,”
Appl. Phys. Lett.
96
,
111113
(
2010
).
37.
E.
Novoselov
,
N.
Zhang
, and
S.
Cherednichenko
, “
Study of MgB2 ultrathin films in submicron size bridges
,”
IEEE Trans. Appl. Supercond.
27
(
4
),
1
10
(
2017
).
38.
Y.
Zhang
,
Z.
Lin
,
Q.
Dai
,
D.
Li
,
Y.
Wang
,
Y.
Zhang
 et al, “
Ultrathin MgB2 films fabricated on Al2O3 substrate by hybrid physical-chemical vapor deposition with high Tc and Jc
,”
Supercond. Sci. Technol.
24
(
1
),
015013
(
2011
).
39.
P.
Focardi
,
A.
Neto
, and
W. R.
McGrath
, “
Coplanar-waveguide-based terahertz hot-electron-bolometer mixers improved embedding circuit description
,”
IEEE Trans. Microw. Theory Tech.
50
(
10
),
2374
2383
(
2002
).
40.
P.
Khosropanah
,
J. R.
Gao
,
W. M.
Laauwen
, and
M.
Hajenius
, “
Low noise NbN hot electron bolometer mixer at 4.3THz
,”
Appl. Phys. Lett.
91
,
221111
(
2007
).
41.
D. J.
Hayton
,
J. R.
Gao
,
J. W.
Kooi
,
Y.
Ren
,
W.
Zhang
, and
G.
de Lange
, “
Stabilized hot electron bolometer heterodyne receiver at 2.5 THz
,”
Appl. Phys. Lett.
100
,
081102
(
2012
).
42.
We use an elliptical Si lens with the semi-minor axis of the ellipse a of 5 mm, the semi-major axis b of 5.235 mm, and the extension c from geometric center of the lens of 1.2 mm thick Si and 0.32 mm thick SiC substrate. This combination forms a nearly perfect elliptical lens based on the simulation by COMSOL Multiphysics. The refractive index is 3.38 for Si and 3.14 for SiC.
43.
Y.
Gan
,
B.
Mirzaei
,
S.
van der Poel
,
J. R. G.
Silva
,
M.
Finkel
,
M.
Eggens
 et al, “
3.9 THz spatial filter based on a back-to-back Si-lens system
,”
Opt. Express
28
,
32693
32708
(
2020
).
44.
A. J.
Gatesman
,
J.
Waldman
,
M.
Ji
,
C.
Musante
, and
S.
Yagvesson
, “
An anti-reflection coating for silicon optics at terahertz frequencies
,”
IEEE Microw. Wirel. Compon. Lett.
10
(
7
),
264
266
(
2000
).
45.
H.
Ekstrom
,
B. S.
Karasik
,
E. L.
Kollberg
, and
K. S.
Yngvesson
, “
Conversion gain and noise of niobium superconducting hot-electron-mixers
,”
IEEE Trans. Microwave Theory Tech.
43
(
4
),
938
947
(
1995
).
46.
The change of the HEB current is achieved by using the voice coil attenuator to vary the LO power at the HEB [41]. The advantage of this method is that the TrecDSB is not influenced by the fluctuations of the LO power and also the direct detection effect [56]. The latter is found to play no role in the MgB2 HEBs because we have not seen any shifts in pumped IV curves between the hot and cold load. This is also what we expected since the radiation power between the two loads, to be absorbed by the HEB, is of the order of ∼10 nW, which is three orders of magnitude lower than the LO power (∼13 μW).
47.
E.
Novoselov
and
S.
Cherednichenko
, “
Gain and noise in THz MgB2 Hot-electron bolometer mixers with a 30-K critical temperature
,”
IEEE Trans. Terahertz Sci. Technol.
7
(
6
),
704
710
(
2017
).
48.
S.
Cherednichenko
,
M.
Kroug
,
H.
Merkel
,
P.
Khosropanah
,
A.
Adam
,
E.
Kollberg
,
D.
Loudkov
,
G.
Gol’tsman
,
B.
Voronov
,
H.
Richter
, and
H.-W.
Huebers
, “
1.6 THz heterodyne receiver for the far infrared space telescope
,”
Physica C
372–376
,
427
431
(
2002
).
49.
E.
Novoselov
, “
Mgb2 hot-electron bolometer mixers for sub-mm wave astronomy
,”
Ph.D. thesis
(
Chalmers University of Technology
,
Sweden
,
2014
).
50.
D. E.
Prober
, “
Superconducting terahertz mixer using a transition-edge microbolometer
,”
Appl. Phys. Lett.
62
,
2119
2121
(
1993
).
51.
B.
Mirzaei
,
W. J.
Vreeling
,
J. R. G.
Silva
,
W.
Laauwen
, and
J. R.
Gao
, “
Enhanced sensitivity of THz NbN hot electron bolometer mixers
,” in
an Extensive Abstract, Submitted to 32nd IEEE International Symposium on Space THz Technology (ISSTT 2022)
,
Baeza, Spain
,
16–20 October
(
IEEE
,
2022
).
52.
C.
Zhang
,
D.
Wang
,
Z.-H.
Liu
,
Y.
Zhang
,
P.
Ma
,
Q.-R.
Feng
,
Y.
Wang
, and
Z.-Z.
Gan
, “
Fabrication of superconducting nanowires from ultrathin MgB2 films via focused ion beam milling
,”
AIP Adv.
5
,
027139
(
2015
).
53.
H. L.
Hortensius
,
E. F. C.
Driessen
, and
T. M.
Klapwijk
, “
Possible indications of electronic inhomogeneities in superconducting nanowire detectors
,”
IEEE Trans. Appl. Supercond.
23
,
2200705
(
2013
).
54.
D.
Wilms Floet
,
E.
Miedema
,
T. M.
Klapwijk
, and
J. R.
Gao
, “Hotspot mixing: A framework for heterodyne mixing in superconducting hot-electron bolometers,”
Appl. Phys. Lett.
74
,
433
435
(
1999
).
55.
H. F.
Merkel
,
P.
Khosropanah
,
D.
Wilms Floet
,
P. A.
Yagoubov
, and
E. L.
Kollberg
,
IEEE Trans. Microwave Theory Tech.
48
,
690
699
(
2000
).
56.
J. J. A.
Baselmans
,
A.
Baryshev
,
S. F.
Reker
,
M.
Hajenius
,
J. R.
Gao
,
T. M.
Klapwijk
,
Y.
Vachtomin
,
S.
Maslennikov
,
S.
Antipov
,
B.
Voronov
, and
G.
Gol’tsman
, “
Direct detection effect in small volume hot electron bolometer mixers
,”
Appl. Phys. Lett.
86
,
163503
(
2005
).
57.
R.
Schieder
and
C.
Kramer
, “
Optimization of heterodyne observations using allan variance measurements
,”
Astron. Astrophys.
373
,
746
756
(
2001
).
58.
M.
Putti
,
M.
Affronte
,
C.
Ferdeghini
,
P.
Manfrinetti
,
C.
Tarantini
, and
E.
Lehmann
, “
Observation of the crossover from two-gap to single-gap superconductivity through specific heat measurements in neutron-irradiated MgB2
,”
Phys. Rev. Lett.
96
,
077003
(
2006
).
59.
S.
Cherednichenko
,
N.
Acharya
,
E.
Novoselov
, and
V.
Drakinskiy
, “
Low kinetic inductance superconducting MgB2 nanowires with a 130 ps relaxation time for single-photon detection applications
,”
Supercond. Sci. Technol.
34
,
044001
(
2021
).
60.
Y.
Lobanov
,
E.
Tong
,
R.
Blundell
,
A.
Hedden
,
B.
Voronov
, and
G.
Gol'tsman
, “
Large-signal frequency response of an HEB mixer: From 300 MHz to terahertz
,”
IEEE Trans. Appl. Supercond.
21
(
3
),
628
631
(
2011
).
61.
W.
Miao
,
W.
Zhang
,
J. Q.
Zhong
,
S. C.
Shi
,
Y.
Delorme
,
R.
Lefevre
,
A.
Feret
, and
T.
Vacelet
, “
Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges
,”
Appl. Phys. Lett.
104
,
052605
(
2014
).
62.
G.
Ghigo
,
G. A.
Ummarino
,
R.
Gerbaldo
,
L.
Gozzelino
,
F.
Laviano
, and
E.
Mezzetti
, “
Effects of disorder on the microwave properties of MgB2 polycrystalline films
,”
Phys. Rev. B
74
,
184518
(
2006
).
63.
E. L.
Kollberg
,
K. S.
Yngvesson
,
Y.
Ren
,
W.
Zhang
,
P.
Khosropanah
, and
J. R.
Gao
, “
Impedance of hot-electron bolometer mixers at terahertz frequencies
,”
IEEE Trans. Terahertz Sci. Technol.
1
,
383
389
(
2011
).
64.
D. C.
Mattis
and
J.
Bardeen
, “
Theory of the anomalous skin effect in normal and superconducting metals
,”
Phys. Rev.
111
,
412
417
(
1958
).
65.
M.
Shcherbatenko
,
I.
Tretyakov
,
Y.
Lobanov
,
S. N.
Maslennikov
,
N.
Kaurova
,
M.
Finkel
,
B.
Voronov
,
G.
Goltsman
, and
T. M.
Klapwijk
, “
Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers
,”
Appl. Phys. Lett.
109
(
13
),
132602
(
2016
).
66.
D.
Wilms Floet
,
J.
Baselmans
,
T. M.
Klapwijk
, and
J. R.
Gao
, “
Resistive transition of niobium diffusion-cooled Hot electron bolometers
,”
Appl. Phys. Lett.
73
,
2826
(
1998
).
67.
P. G.
de Gennes
, “
Boundary effects in superconductors
,”
Rev. Mod. Phys.
36
,
225
237
(
1964
).
68.
C.
Buzea
and
T.
Yamashita
, “
Review of the superconducting properties of MgB2
,”
Supercond. Sci. Technol.
14
,
R115
R146
(
2001
), where you are referred to Table 5 in page 19. We took only the coherence lengths ξc along c-axis for thin MgB2 films, which is believed to be directly relevant to our system. Actually the coherence lengths along the ab plane (ξab) range even larger.
69.
D.
Wilms Floet
, “
Hotspot mixing in THz niobium superconducting hot electron bolometer mixers
,”
Ph.D. thesis
(
Delft University of Technology
,
The Netherlands
,
2001
).
70.
S. L.
Bud’ko
,
G.
Lapertot
,
C.
Petrovic
,
C. E.
Cunningham
,
N.
Anderson
, and
P. C.
Canfield
, “
Boron isotope effect in superconducting MgB2
,”
Phys. Rev. Lett.
86
,
1877
1880
(
2001
).
You do not currently have access to this content.