In a highly integrated analog radio-over-fiber transceiver, seamless integration of the antenna-frontend is crucial as an antenna is generally implemented on a high-κ material, which is set to highly degrade the antenna's performance. This work is concerned with the radiation behavior improvement of a planar leaky-wave antenna with an inductive partially reflecting surface (PRS) on a high-κ substrate for the development of a highly directive antenna. To begin with, we show how a thin and single-mode resonance (SMR) inductive PRS on high-κ materials in a planar leaky-wave antenna is set to provoke two resonance frequencies (i.e., PRS and cavity resonances) to converge, thereby diminishing the antenna's broadside directivity. By applying an equivalent circuit model, we explain how a multi-mode resonance (MMR) PRS can adequately be applied to address the underlying challenges. Subsequently, the leaky-wave radiation behavior of an antenna with a heterogeneous substrate is investigated and analytical equations are derived and verified with a full-wave simulation. The effects of material permittivity and thickness in a heterogeneous-cavity antenna on leaky-wave performance are investigated using these approximate yet accurate-enough equations. To justify the findings, two 9 × 9 planar leaky-wave antennas are prototyped on heterogeneous substrates based on SMR and MMR PRS and the radiation performances are compared. Our investigations reveal that in the proposed scenario, an MMR PRS can significantly enhance the antenna's broadside directivity by over 4 dBi at the resonance frequency (27.5 GHz), which is also set to improve radiation pattern compared to a SMR-based antenna. Finally, a single-fed dual-band aperture-shared antenna with a large frequency ratio (S-band and Ka-band) is developed and fabricated on a high-κ substrate based on the proposed MMR PRS.

1.
W. I.
Way
, “
Subcarrier multiplexed light wave system design considerations for subscriber loop applications
,”
J. Lightwave Technol.
7
(
11
),
1806
1818
(
1989
).
2.
H.
Ogawa
,
D.
Polifko
, and
S.
Banba
, “
Millimeter-wave fiber optics systems for personal radio communication
,”
IEEE Trans. Microw. Theory Tech.
40
(
12
),
2285
2293
(
1992
).
3.
E. S.
Lima
,
R. M.
Borges
,
L. A.
Melo Pereira
,
H. R.
Dias Filgueiras
,
A. M.
Alberti
, and
A.
Cerqueira Sodré
, “
Multiband and photonically amplified fiber-wireless Xhaul
,”
IEEE Access
8
,
44381
44390
(
2020
).
4.
D.
Marpaung
,
J.
Yao
, and
J.
Capmany
, “
Integrated microwave photonics
,”
Nat. Photonics
13
,
80
90
(
2019
).
5.
J.
Yao
, “
Photonics for ultrawideband communications
,”
IEEE Microw. Mag.
10
(
4
),
82
95
(
2009
).
6.
J.
Yao
,
F.
Zeng
, and
Q.
Wang
, “
Photonic generation of ultrawideband signals
,”
J. Lightwave Technol.
25
(
11
),
3219
3235
(
2007
).
7.
K.
Zeb
,
Z.
Lu
,
J.
Liu
,
Y.
Mao
,
G.
Liu
,
P.
Poole
,
M.
Rahim
,
G.
Pakulski
,
P.
Barrios
,
W.
Jiang
, and
X.
Zhang
, “
Inas/InP quantum dash buried heterostructure mode-locked laser for high capacity fiber-wireless integrated 5G new radio fronthaul systems
,”
Opt. Express
29
(
11
),
16164
16174
(
2021
).
8.
A.
Askarian
and
K.
Wu
, “
Shared-aperture enabled integration of sub-6 GHz and millimeter-wave antennas for future multi-functional wireless systems
,” in
2020 IEEE International Symposium on Antenna and Propagation and North American Radio Science Meeting
(
IEEE
,
2020
), pp,
1775–
1776
.
9.
A.
Askarian
and
K.
Wu
, “
Miniaturized dual-band slot antenna with self-scalable pattern for array applications
,” in
2020 IEEE International Symposium on Antenna and Propagation and North American Radio Science Meeting
(
IEEE
,
2020
), pp.
1943
1944
.
10.
J. F.
Zhang
,
Y. J.
Cheng
,
Y. R.
Ding
, and
C. X.
Bai
, “
A dual-band shared-aperture antenna with large frequency ratio, high aperture reuse efficiency, and high channel isolation
,”
IEEE Trans. Antenn. Propag.
67
(
2
),
853
860
(
2019
).
11.
B. J.
Xiang
,
S. Y.
Zheng
,
H.
Wong
,
Y. M.
Pan
,
K. X.
Wang
, and
M. H.
Xia
, “
A flexible dual-band antenna with large frequency ratio and different radiation properties over the Two bands
,”
IEEE Trans. Antenn. Propag.
66
(
2
),
657
667
(
2018
).
12.
X.
Yang
 et al., “
An integrated Tri-band antenna system with large frequency ratio for WLAN and WiGig applications
,”
IEEE Trans. Ind. Electron.
68
(
5
),
4529
4540
(
2021
).
13.
J.
Zhu
,
Y.
Yang
,
S.
Liao
, and
Q.
Xue
, “
Aperture-shared millimeter-wave/Sub-6 GHz dual-band antenna hybridizing Fabry–Perot cavity and Fresnel zone plate
,”
IEEE Trans. Antenn. Propag.
69
(
12
),
8170
8181
(
2021
).
14.
Z:-X
Xia
,
K. W.
Leung
,
N.
Yang
, and
K.
Lu
, “
Compact dual-frequency antenna array with large frequency ratio
,”
IEEE Trans. Antenn. Propag.
69
(
4
),
2031
2040
(
2021
).
15.
J.-X
Chen
,
S.-H.
Cao
, and
X.-F.
Zhang
, “
SPPs-shared dual-band antenna with large frequency ratio
,”
IEEE Access
8
,
29132
29139
(
2020
).
16.
A.
Askarian
,
J.
Yao
,
Z.
Lu
, and
K.
Wu
, “
Surface-wave control technique for mutual coupling mitigation in array antenna
,”
IEEE Microw. Wirel. Compon. Lett.
32
(6),
623
626
(
2022
).
17.
J. B.
Keller
and
F. C.
Karal
, “
Surface wave excitation and propagation
,”
J. Appl. Phys.
31
,
1039
(
1960
).
18.
J. P.
Doane
,
K.
Sertel
, and
J. L.
Volakis
, “
Matching bandwidth limits for arrays backed by a conducting ground plane
,”
IEEE Trans. Antenn. Propag.
61
(
5
),
2511
2518
(
2013
).
19.
G.
Goubau
, “
Surface waves and their application to transmission lines
,”
J. Appl. Phys.
21
,
1119
(
1950
).
20.
S. S.
Attwood
, “
Surface-wave propagation over a coated plane conductor
,”
J. Appl. Phys.
22
,
504
(
1951
).
21.
H. S.
Tuan
, “
Scattering of a TM surface wave at a guide deformation
,”
J. Appl. Phys.
44
,
5522
(
1973
).
22.
L.
Li
,
Q.
Chen
,
Q.
Yuan
,
C.
Liang
, and
K.
Sawaya
, “
Surface-wave suppression band gap and plane-wave reflection phase band of mushroom like photonic band gap structures
,”
J. Appl. Phys.
103
,
023513
(
2008
).
23.
B. I.
Wu
,
H.
Chen
,
J. A.
Kong
, and
T. M.
Grzegorczyk
, “
Surface wave suppression in antenna systems using magnetic metamaterial
,”
J. Appl. Phys.
101
,
114913
(
2007
).
24.
J.-W.
Jeong
and
J.-S.
Park
, “
A microcontroller unit-based electromagnetic bandgap control scheme: Application for enhancing isolation in an antenna array and the EMI scanner system speed thereof
,”
IEEE Trans. Microw. Theory Tech.
68
(
11
),
4536
4553
(
2020
).
25.
K.
Sengupta
and
A.
Hajimiri
, “
Designing optimal surface currents for efficient On-chip Mm-wave radiators with active circuitry
,”
IEEE Trans. Microw. Theory Tech.
64
(
7
),
1976
1988
(
2016
).
26.
S. D.
Rogers
, “
Electromagnetic-bandgap layers for broad-band suppression of TEM modes in power planes
,”
IEEE Trans. Microw. Theory Tech.
53
(
8
),
2495
2505
(
2005
).
27.
J.
Park
,
A. C. W.
Lu
,
K. M.
Chua
,
L. L.
Wai
,
J.
Lee
, and
J.
Kim
, “
Double-stacked EBG structure for wideband suppression of simultaneous switching noise in LTCC-based SiP applications
,”
IEEE Microw. Wirel. Compon. Lett.
16
(
9
),
481
483
(
2006
).
28.
Y.
Peng
,
B. M. F.
Rahman
,
X.
Wang
 et al., “
Performance enhanced miniaturized and electrically tunable patch antenna with patterned permalloy based magneto-dielectric substrate
,”
J. Appl. Phys.
115
,
17A505
(
2014
).
29.
A.
Askarian
,
J.
Yao
,
Z.
Lu
, and
K.
Wu
, “
Extremely low-profile periodic 2D leaky-wave antenna: An optimal solution for antenna-frontend integration
,”
IEEE Trans. Antenn. Propag.
70
(
9
),
7798
7812
(
2022
).
30.
G.
Lovat
,
P.
Burghignoli
, and
D. R.
Jackson
, “
Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas
,”
IEEE Trans. Antenn. Propag.
54
(
5
),
1442
1452
(
2006
).
31.
A.
Hosseini
,
F.
Capolino
, and
F.
De Flaviis
, “
Gain enhancement of a V-band antenna using a Fabry-Perot cavity with a self-sustained all-metal cap with FSS
,”
IEEE Trans. Antenn. Propag.
63
(
3
),
909
921
(
2015
).
32.
D. R.
Jackson
 et al., “
The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves
,”
Proc. IEEE
99
(
10
),
1780
1805
(
2011
).
33.
M. M.
Honari
,
P.
Mousavi
, and
K.
Sarabandi
, “
Miniaturized-element frequency selective surface metamaterials: A solution to enhance radiation of RFICs
,”
IEEE Trans. Antenn. Propag.
68
(
3
),
1962
1972
(
2020
).
34.
Y. W.
Hsu
,
H. C.
Lin
, and
Y. C.
Lin
, “
Modeling and PCB implementation of standing leaky-wave antennas incorporating edge reflection for broadside radiation enhancement
,”
IEEE Trans. Antenn. Propag.
64
(
2
),
461
468
(
2016
).
35.
G.
Lovat
,
P.
Burghignoli
,
F.
Capolino
, and
D.
Jackson
, “
Highly-directive planar leaky-wave antennas: A comparison between metamaterial-based and conventional designs
,”
Proc. Eur. Microw. Assoc.
12
,
12
21
(
2006
).
36.
M. U.
Afzal
and
K. P.
Esselle
, “
Quasi-analytical synthesis of continuous phase correcting structure to increase the directivity of circulary polarized Fabry-Perot resonator antennas
,”
J. Appl. Phys.
117
,
214902
(
2015
).
37.
D.
Zheng
and
K.
Wu
, “
Leaky-wave antenna featuring stable radiation based on multimode resonator concept
,”
IEEE Trans. Antenn. Propag.
68
(
3
),
2016
2030
(
2020
).
38.
A.
Askarian
and
K.
Wu
, “
Wideband and high-gain slot antenna using self-scalable current distribution and multi-mode resonance
,” in
IEEE 19th International Symposium on Antenna Technology and Applied Electromagnet (ANTEM)
(
IEEE
,
2021
), pp.
1
2
.
39.
Z.
Zhang
and
F.
Xiao
, “
An UWB bandpass filter based on a novel type of multi-mode resonator
,”
IEEE Microw. Wirel. Compon. Lett.
22
(
10
),
506
508
(
2012
).
40.
C. H.
Lee
,
C. I. G.
Hsu
, and
C. J.
Chen
, “
Band-notched balanced UWB BPF with stepped-impedance slotline multi-mode resonator
,”
IEEE Microw. Wirel. Compon. Lett.
22
(
4
),
182
184
(
2012
).
41.
M.
Poveda-Garcia
and
J. L.
Gómez-Tornero
, “
Spectral analysis of broadband Fabry-Perot antennas with multiple coupled cavities
,”
IEEE Trans. Antenn. Propag.
70
,
167
179
(
2022
).
42.
R. E.
Collin
, “
Impedance transformation and matching
,” in
Foundations for Microwave Engineering
(
IEEE
,
2001
), pp.
303
393
.
43.
D.
Pozar
, “
Considerations for millimeter wave printed antennas
,”
IEEE Trans. Antenn. Propag.
31
(
5
),
740
747
(
1983
).
44.
A. T.
Almutawa
 et al., “
Leaky-wave analysis of wideband planar Fabry-Pérot cavity antennas formed by a thick PRS
,”
IEEE Trans. Antenn. Propag.
67
(
8
),
5163
5175
(
2019
).
You do not currently have access to this content.