Arsenic is one of the most toxic elements present in the environment, especially in water. The World Health Organization (WHO) recommends a maximum concentration of arsenic in drinkable water of 10 μg/l (10 ppb). Sensors implementing Surface Enhanced Raman Scattering (SERS) can detect chemical species at low concentrations. The aim of this study is to compare two kinds of silver-coated SERS substrates for detection and speciation of trace, trivalent and pentavalent, inorganic arsenic compounds. One type of substrate was prepared by a classical thermal evaporation technique, and the second type by an electroless process. The thermally evaporated substrates allowed the detection of As(III) only, at a limit of detection (LOD) of approximately 50 mg/l, whereas As(V) could not be detected at any analyte concentration. The electroless substrates allow one to differentiate As(III) and As(V) with a LOD 1 μg/l (1 ppb) equal for each valency, below the WHO recommendation. The electroless substrates show a very large sensitivity across up to five orders of magnitude in terms of analyte concentration. Although the SERS intensity shows a nonlinear behavior over this range of concentrations, these preliminary results are encouraging in the framework of the demonstration of trace As SERS sensors in drinkable water.

1.
S. J.
Flora
, “
Arsenic chemistry, occurrence, and exposure
,” in
Handbook of Arsenic Toxicology
(
Elsevier Inc.
,
2015
), pp.
1
49
.
2.
M.
Singh
and
M.
del Valle
, “
Arsenic biosensors: Challenges and opportunities for high-throughput detection
,” in
Handbook of Arsenic Toxicology
(
Elsevier Inc.
,
2015
), pp.
575
588
.
3.
E.
Shaji
,
M.
Santosh
,
K. V.
Sarath
,
P.
Prakash
,
V.
Deepchand
, and
B. V.
Divya
, “
Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula
,”
Geosci. Front.
12
(
3
),
101079
(
2021
).
4.
A.
Chatterjee
,
D.
Das
, and
D.
Chakraborti
, “
A study of ground water contamination by arsenic in the residential area of Behala, Calcutta, due to industrial pollution
,”
Environ. Pollut.
80
(
1
),
57
65
(
1993
).
5.
E.
Morgan
, “Durango copes with ‘orange nastiness’ of toxic sludge river pollution,” The Guardian, 10 August 2015.
6.
M.
Dundas
,
V.
Dekimpe
,
J.
Lacharnay
,
J.
Guggenheim
, and
M.-C.
Ide
, see https://www.france24.com/en/20190216-down-earth-france-pollution-gold-mine-arsenic-toxic-waste-salsigne-aude for “Arsenic Pollution: A Toxic Legacy of France's Gold Rush” (accessed 27 July 2022).
7.
B. A.
Fowler
and
S.
Flora
, “
Arsenical kidney toxicity
,” in
Handbook of Arsenic Toxicology
, edited by
A.
Press
(
Oxford, Elsevier
,
2015
), pp.
349
361
.
8.
A.
Barats
,
G.
Féraud
,
C.
Potot
,
V.
Philippini
,
Y.
Travi
,
G.
Durrieu
,
M.
Dubar
, and
R.
Simler
, “
Naturally dissolved arsenic concentrations in the Alpine/Mediterranean Var River watershed (France)
,”
Science of The Total Environment
473–474
,
422
436
(
2014
).
9.
D.
Melamed
, “
Monitoring arsenic in the environment: A review of science and technologies with the potential for field measurements
,”
Anal. Chim. Acta
532
(
1
),
1
13
(
2005
).
10.
J.
Ma
,
M. K.
Sengupta
,
Y.
Dongxing
, and
P. K.
Dasgupta
, “
Speciation and detection of arsenic in aqueous sample: A review of recent process in non-atomic spectrometric methods
,”
Anal. Chim. Acta
831
,
1
23
(
2014
).
11.
J.
Hao
,
M.-J.
Han
,
S.
Han
,
X.
Meng
,
T.-L.
Su
, and
Q. K.
Wang
, “
SERS detection of arsenic in water: A review
,”
J. Environ. Sci.
36
,
152
162
(
2015
).
12.
See https://www.trace2o.com/product-page/arsenometer for portable sensor for monitoring As (accessed 27 July 2022).
13.
See https://www.metrohm.com/en_gb/products/voltammetry/portable-va-analyser.html for portable sensor for monitoring As (accessed 27 July 2022).
14.
See https://en.klearia.com/monitoring for Klearia sensor for monitoring heavy metals (accessed 27 July 2022).
15.
K.
Kneipp
,
H.
Kneipp
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
, “
Surface-enhanced Raman scattering and biophysics
,”
J. Phys.: Condens. Matter
14
(
18
),
R597
R624
(
2002
).
16.
S.
Degioanni
,
A. M.
Jurdyc
,
A.
Cheap
,
B.
Champagnon
,
F.
Bessueille
,
J.
Coulm
,
L.
Bois
, and
D.
Vouagner
, “
Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors
,”
J. Appl. Phys.
118
(
115
),
153103
(
2015
).
17.
S. J.
Greaves
and
W. P.
Griffith
, “
Surface-enhanced Raman scattering (SERS) from silver colloids of vanadate, phosphate and arsenate
,”
J. Raman Spectrosc.
19
(
18
),
503
507
(
1988
).
18.
R.
Liu
,
J.-F.
Sun
,
D.
Cao
,
L.-Q.
Zhang
,
J. F.
Liu
, and
G. B.
Jiang
, “
Fabrication of highly-specific SERS substrates by co-precipitation of functional nanomaterials during the self-sedimentation of silver nanowires into a nanoporous film
,”
Chem. Commun.
51
(
7
),
1309
1312
(
2015
).
19.
J.
Hao
,
M.-J.
Han
,
Z.
Xu
,
J.
Li
, and
X.
Meng
, “
Fabrication and evolution of multilayer silver nanofilms for surface-enhanced Raman scattering sensing of arsenate
,”
Nanoscale Res. Lett.
6
(
1
),
263
(
2011
).
20.
M.
Vinod
and
K.
Gopchandran
, “
Bi-metallic Au-Ag nanochains as SERS substrates
,”
Curr. Appl. Phys.
15
(
8
),
857
863
(
2015
).
21.
H.
Tang
,
C.
Zhu
,
G.
Meng
, and
N.
Wu
, “
Review—surface-enhanced Raman scattering sensors for food
,”
J. Electrochem. Soc.
165
(
8
),
B3098
B3118
(
2018
).
22.
See http://gwyddion.net/ for Gwydion modular programme for Scanning Electron Microscopy.
23.
D. E.
Irish et
and
O.
Puzic
, “
Raman spectral study of the constitution and equilibria of nitric acid and d-nitric acid
,”
J. Solution Chem.
10
(
6
),
377
393
(
1981
).
24.
A.
Ruas
,
P.
Pochon
,
J.-P.
Simonin et
, and
P.
Moisy
, “
Nitric acid: Modeling osmotic coefficients and acid–base dissociation using the BIMSA theory
,”
Dalton Trans.
39
(
42
),
10148
10153
(
2010
).
25.
J. J.
Mock
,
M.
Barbic
,
D. R.
Smith
,
D. A.
Schultz
, and
S.
Schultz
, “
Shape effects in plasmon resonance of individual colloidal silver nanoparticles
,”
J. Chem. Phys.
116
(
115
),
6755
6759
(
2002
).
26.
K.
Chatterjee
,
S.
Banerjee
, and
D.
Chakravorty
, “
Plasmon resonance shifts in oxide-coated silver nanoparticles
,”
Phys. Rev. B
66
(
8
),
085421
(
2002
).
27.
M. D.
McMahon
,
R.
Lopez
,
H. M.
Meyer
,
L. C.
Feldman
, and
R. F.
Haglund
, “
Rapid tarnishing of silver nanoparticles in ambient laboratory air
,”
Appl. Phys. B
80
(
7
),
915
921
(
2005
).
28.
N. J.
Halas
,
S.
Lal
,
W.-S.
Chang
,
S.
Link
, and
P.
Nordlander
, “
Plasmons in strongly coupled metallic nanostructures
,”
Chem. Rev.
111
(
6
),
3913
3961
(
2011
).
29.
A.
Quiroz
,
R.
Sato
,
E.
Massoni
,
R.
Sánchez
,
G.
Bañuelos
,
N.
Sánchez
, and
E.
Mata
, “
Step by step synthesis of silver films by electroless technique and their SERS application of sodium arsenate
,”
Mater. Res. Express
6
(
11
),
116439
(
2019
).
30.
P. K.
Jain
,
W.
Huang
, and
M. A.
El-Sayed
, “
On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation
,”
Nano Lett.
7
(
7
),
2080
2088
(
2007
).
31.
N.
Kalfagiannis
,
P.
Patsalas
, and
D. C.
Koutsogeorgis
, “
Laser annealing as a platform for plasmonic nanostructuring
,” in
Nanoplasmonics—Fundamentals and Applications
(
InTech
,
2017
).
32.
P. J.
Jobst
,
O.
Stenzel
,
M.
Schürmann
,
N.
Modsching
,
S.
Yulin
,
S.
Wilbrandt
,
D.
Gäbler
,
N.
Kaiser
, and
A.
Tünnermann
, “
Optical properties of unprotected and protected sputtered silver films: Surface morphology vs.: UV/VIS reflectance
,”
Adv. Opt. Technol.
3
(
1
),
91
102
(
2014
).
33.
K.
Seal
,
D. A.
Genov
,
A. K.
Sarychev
,
H.
Noh
,
V. M.
Shalaev
,
Z. C.
Ying
,
X.
Zhang
, and
H.
Cao
, “
Coexistence of localized and delocalized surface plasmon modes in percolating metal films
,”
Phys. Rev. Lett.
97
(
20
),
206103
(
2006
).
34.
A.
Merlen
and
F.
Lagugné-Labarthet
, “
Imaging the optical near field in plasmonic nanostructures
,”
Appl. Spectrosc.
68
(
12
),
1307
1326
(
2014
).
35.
S. L.
Smitha
,
K. M.
Nissamudeen
,
D.
Philip
, and
K. G.
Gopchandran
, “
Studies on surface plasmon resonance and photoluminescence of silver nanoparticles
,”
Spectrochim. Acta, Part A
71
(
1
),
186
190
(
2008
).
36.
G.-N.
Xiao
and
M.
Shi-Qing
, “
Surface-enhanced Raman scattering of methylene blue absorbed on cap-shaped silver nanoparticles
,”
Chem. Phys. Lett.
447
(
4–6
),
305
309
(
2007
).
37.
R. R.
Naujok
,
R. V.
Duevel
, and
R. M.
Corn
, “
Fluorescence and Fourier transform surface-enhanced Raman scattering measurements of methylene blue adsorbed onto a sulfur-modified gold electrode
,”
Langmuir
9
(
7
),
1771
1774
(
1993
).
38.
U.
Laor
and
G. C.
Schartz
, “
The role of surface roughness in surface enhanced Raman spectroscopy (SERS) the importance of multiple plasmon resonances
,”
Chem. Phys. Lett.
82
(
3
),
566
570
(
1981
).
39.
I.
Pockrand
, “
Surface-enhanced Raman scattering from evaporated Ag films: Size of relevant roughness features and range of classical enhancement
,”
Chem. Phys. Lett.
92
(
5
),
509
513
(
1982
).
40.
J.
Rodriguez-Fernandez
,
A. M.
Funston
,
J.
Perez-Juste
,
R. A.
Alvarez-Puebla
,
L. M.
Liz-Marzan
, and
P.
Mulvaney
, “
The effect of surface roughness on the plasmonic response of individual sub-micron gold sphere
,”
Phys. Chem. Chem. Phys.
11
(
28
),
5909
5914
(
2009
).
41.
A. G.
Brolo
,
D. E.
Irish
, and
B. D.
Smith
, “
Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions
,”
J. Mol. Struct.
405
(
1
),
29
44
(
1997
).
42.
W.-X.
Chen
,
H.
Jiang
,
Z.-D.
Xu
, and
Y.
Lu
, “
Study on the chemisorption kinetics of methylene blue using SERS technique
,”
Chin. J. Chem.
17
(
2
),
125
131
(
1999
).
43.
M.
Sackmann
and
A.
Materny
, “
Surface enhanced Raman scattering (SERS)—A quantitative analytical tool?
,”
J. Raman Spectrosc.
37
(
1–3
),
305
310
(
2006
).
44.
L.
Zhong
,
Y.
Hu
, and
D.
Xing
, “Adsorption orientation of methylene blue (MB+) on the silver colloid: SERS and DFT studies,” in
Conference on Lasers and Electro-Optics/Pacific Rim 2009
(
Optica Publishing Group
,
2009
), paper TUP14_1.
45.
Z.
Li
,
C.-J.
Wang
, and
W.-T.
Jiang
, “
Intercalation of methylene blue in a high-charge calcium montmorillonite—An indication of surface charge determination
,”
Adsorpt. Sci. Technol.
28
(
4
),
297
312
(
2010
).
46.
M.
Mulvihill
,
A.
Tao
,
K.
Benjauthrit
,
J.
Arnold
, and
P.
Yang
, “
Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water
,”
Angew. Chem.
120
(
34
),
6556
6560
(
2008
).
47.
M. C.
Teixeira
and
V. S. T.
Ciminelli
, “
Development of a biosorbent for arsenite: Structural modeling based on x-ray spectroscopy
,”
Environ. Sci. Technol.
39
(
3
),
895
900
(
2005
).
48.
C.
Han
,
H.
Li
,
H.
Pu
,
H.
Yu
,
L.
Deng
,
S.
Huang
, and
Y.
Luo
, “
Synthesis and characterization of mesoporous alumina and their performances for removing arsenic (V)
,”
Chem. Eng. J.
217
,
1
9
(
2013
).
49.
G.
Jha
,
S.
Mukhopadhyay
,
A. L.
Ulery
,
K.
Lombard
,
S.
Chakraborty
,
D. C.
Weindorf
,
D.
VanLeeuwen
, and
C.
Brungard
, “
Agricultural soils of the Animas River watershed after the gold king mine spill: An elemental spatiotemporal analysis via portable x-ray fluorescence spectroscopy
,”
J. Environ. Qual.
50
(
3
),
730
743
(
2021
).
You do not currently have access to this content.