The alarming situation of the growing number of diabetic patients has called for a simple, sensitive, and selective glucose sensor that is also stable and user-friendly. In this report, we have reviewed the latest electrochemical sensing technology based on transition metal phosphides (TMPs) for glucose detection. Apart from the oxides, sulfides, nitrides, chalcogenides, etc., transition metal phosphides are less explored and have emerged as potential candidates for non-enzymatic glucose sensing applications. This review will help scientists and researchers to exploit relevant properties for glucose sensing applications, identify the best synthesis approaches to prepare transition metal phosphides, and provide information on the factors influencing glucose sensing and parameters to improve the performance and theoretical insights into the mechanism involved. Therefore, this review emphasizes a few methods adopted for tuning the properties of TMPs to achieve a stable glucose-sensing device. Finally, we propose our perspectives on potential directions for TMP-based material development in enzymeless electrochemical glucose sensing applications.

1.
A.
Pandey
 et al, “
Alternative therapies useful in the management of diabetes: A systematic review
,”
J. Pharm. BioAllied Sci.
3
(
4
),
504
(
2011
).
2.
S.
Kalra
 et al, “
Hypoglycemia: The neglected complication
,”
Indian J. Endocrinol. Metab.
17
(
5
),
819
834
(
2013
).
3.
W. D.
Smith
 et al, “
Causes of hyperglycemia and hypoglycemia in adult inpatients
,”
Am. J. Health Syst. Pharm.
62
(
7
),
714
719
(
2005
).
4.
M.
James
 et al, “
Association between metabolic syndrome and diabetes mellitus according to International Diabetic Federation and National Cholesterol Education Program Adult Treatment Panel III criteria: A cross-sectional study
,”
J. Diabetes Metab. Disord.
19
(
1
),
437
443
(
2020
).
5.
G.
Wilcox
, “
Insulin and insulin resistance
,”
Clin. Biochem. Rev.
26
(
2
),
19
39
(
2005
).
6.
I.
Vecchio
 et al, “
The discovery of insulin: An important milestone in the history of medicine
,”
Front. Endocrinol.
9
,
613
(
2018
).
7.
P. R.
Miller
,
R. J.
Narayan
, and
R.
Polsky
, “
Microneedle-based sensors for medical diagnosis
,”
J. Mater. Chem. B
4
(
8
),
1379
1383
(
2016
).
8.
T. N.
Gia
 et al, “
IoT-based continuous glucose monitoring system: A feasibility study
,”
Proc. Comput. Sci.
109
,
327
334
(
2017
).
9.
S. T.
Oyama
 et al, “
Transition metal phosphide hydroprocessing catalysts: A review
,”
Catal. Today
143
(
1–2
),
94
107
(
2009
).
10.
M.-S.
Steiner
,
A.
Duerkop
, and
O. S.
Wolfbeis
, “
Optical methods for sensing glucose
,”
Chem. Soc. Rev.
40
(
9
),
4805
4839
(
2011
).
11.
A.
Shoji
 et al, “
An enzyme-modified capillary as a platform for simultaneous fluorometric detection of D-glucose and L-lactate
,”
J. Pharm. Biomed. Anal.
163
,
1
8
(
2019
).
12.
J.
Wang
, “
Electrochemical glucose biosensors
,”
Chem. Rev.
108
(
2
),
814
825
(
2008
).
13.
P.
Kabasakalian
,
S.
Kalliney
, and
A.
Westcott
, “
Enzymatic blood glucose determination by colorimetry of N,N-diethylaniline-4-aminoantipyrine
,”
Clin. Chem.
20
(
5
),
606
607
(
1974
).
14.
J.
Luo
 et al, “
A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure
,”
Biosens. Bioelectron.
49
,
512
518
(
2013
).
15.
L. C.
Clark
, Jr.
and
C.
Lyons
, “
Electrode systems for continuous monitoring in cardiovascular surgery
,”
Ann. N. Y. Acad. Sci.
102
,
29
45
(
1962
).
16.
B.
Xue
 et al, “
Ni foam-supported ZnO nanowires and Co3O4/NiCo2O4 double-shelled nanocages for efficient hydrogen peroxide detection
,”
Sens. Actuators, B
262
,
828
836
(
2018
).
17.
S.
Ci
 et al, “
Nickel oxide hollow microsphere for non-enzyme glucose detection
,”
Biosens. Bioelectron.
54
,
251
257
(
2014
).
18.
Y. B.
Vassilyev
,
O. A.
Khazova
, and
N. N.
Nikolaeva
, “
Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum
,”
J. Electroanal. Chem. Interfac. Electrochem.
196
(
1
),
105
125
(
1985
).
19.
D.
Pletcher
, “
Electrocatalysis: Present and future
,”
J. Appl. Electrochem.
14
(
4
),
403
415
(
1984
).
20.
D.
Das
 et al, “
Phosphine-free avenue to Co2 P nanoparticle encapsulated N,P co-doped CNTs: A novel non-enzymatic glucose sensor and an efficient electrocatalyst for oxygen evolution reaction
,”
Green Chem.
19
(
5
),
1327
1335
(
2017
).
21.
S.
Premlatha
,
P.
Sivasakthi
, and
G.
Ramesh Bapu
, “
Electrodeposition of a 3D hierarchical porous flower-like cobalt–MWCNT nanocomposite electrode for non-enzymatic glucose sensing
,”
RSC Adv.
5
(
91
),
74374
74380
(
2015
).
22.
S.
Ci
 et al, “
Enzymeless glucose detection based on CoO/graphene microsphere hybrids
,”
Electroanalysis
26
(
6
),
1326
1334
(
2014
).
23.
M. A.
Sakr
 et al, “
Performance-Enhanced Non-enzymatic glucose sensor based on graphene-heterostructure
,”
Sensors (Basel, Switzerland)
20
(
1
),
145
(
2019
).
24.
S.
Wu
 et al, “
Graphene-based electrochemical sensors
,”
Small
9
(
8
),
1160
1172
(
2013
).
25.
P.
Gao
and
D.
Liu
, “
Hydrothermal preparation of nest-like CuO nanostructures for non-enzymatic amperometric detection of hydrogen peroxide
,”
RSC Adv.
5
(
31
),
24625
24634
(
2015
).
26.
S. A.
Abrori
 et al, “
Metal-Organic-Framework FeBDC-derived Fe(3)O(4) for Non-enzymatic electrochemical detection of glucose
,”
Sensors (Basel)
20
(
17
),
4891
(
2020
).
27.
Z.
Yin
 et al, “
Mingled MnO2 and Co3O4 binary nanostructures on well-aligned electrospun carbon nanofibers for nonenzymatic glucose oxidation and sensing
,”
Cryst. Growth Des.
21
(
3
),
1527
1539
(
2021
).
28.
S.
Yang
 et al, “
Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor
,”
Sens. Actuators, B
221
,
172
178
(
2015
).
29.
S.
Lakshmy
 et al, “
Catechol detection in pure and transition metal decorated 2D MoS2: Acumens from density functional theory approaches
,”
Appl. Surf. Sci.
562
,
150216
(
2021
).
30.
A.
Vaidyanathan
 et al, “
Nitrobenzene sensing in pristine and metal doped 2D dichalcogenide MoS2: Insights from density functional theory investigations
,”
Appl. Surf. Sci.
550
,
149395
(
2021
).
31.
K.
Anderson
 et al, “
A highly sensitive nonenzymatic glucose biosensor based on the regulatory effect of glucose on electrochemical behaviors of colloidal silver nanoparticles on MoS2
,”
Sensors
17
(
8
),
1807
(
2017
).
32.
P. A.
Borade
 et al, “
MoS2 nanosheet-modified NiO layers on a conducting carbon paper for glucose sensing
,”
ACS Appl. Nano Mater.
4
(
7
),
6609
6619
(
2021
).
33.
N.
Rohaizad
 et al, “
1T-Phase transition metal dichalcogenides (MoS2, MoSe2, WS2, and WSe2) with fast heterogeneous electron transfer: Application on second-generation enzyme-based biosensor
,”
ACS Appl. Mater. Interfaces
9
(
46
),
40697
40706
(
2017
).
34.
M. H.
Hassan
 et al, “
Recent advances in enzymatic and Non-enzymatic electrochemical glucose sensing
,”
Sensors
21
(
14
),
4672
(
2021
).
35.
L.
Xu
,
X.
Zhang
,
Z.
Wang
,
A. A.
Haidry
,
Z.
Yao
,
E.
Haque
 et al., “
Low dimensional materials for glucose sensing
,”
Nanoscale
13
(
25
),
11017
11040
(
2021
).
36.
Q.
Dong
,
H.
Ryu
, and
Y. J.
Lei
, “
Metal oxide based non-enzymatic electrochemical sensors for glucose detection
,”
Electrochim. Acta
370
,
137744
(
2021
).
37.
S.
Liu
, W. Zeng, Q. Guo, and Y. Li, “
Metal oxide-based composite for non-enzymatic glucose sensors
,”
J. Mater. Sci.: Mater. Electron.
31
, 16111–16136 (
2020
).
38.
H.
Teymourian
,
A.
Barfidokht
, and
J.
Wang
, “
Electrochemical glucose sensors in diabetes management: An updated review (2010–2020)
,”
Chem. Soc. Rev.
49
,
7671
(
2020
).
39.
W.
He
,
Y.
Huang
, and
J.
Wu
, “
Enzyme-Free glucose biosensors based on MoS(2) nanocomposites
,”
Nanoscale Res. Lett.
15
(
1
),
60
(
2020
).
40.
C. I.
Justino
 et al, “
Graphene based sensors and biosensors
,”
Trends Anal. Chem.
91
,
53
66
(
2017
).
41.
X.
Niu
 et al, “
Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: Opportunities and challenges
,”
RSC Adv.
6
(
88
),
84893
84905
(
2016
).
42.
S.
Carenco
 et al, “
Nanoscaled metal borides and phosphides: Recent developments and perspectives
,”
Chem. Rev.
113
(
10
),
7981
8065
(
2013
).
43.
L.
Feng
and
H. J. C.
Xue
, “
Advances in transition-metal phosphide applications in electrochemical energy storage and catalysis
,”
ChemElectroChem
4
(
1
),
20
34
(
2017
).
44.
M. C.
Alvarez-Galvan
,
J. M.
Campos-Martin
, and
J. L. J. C.
Fierro
, “
Transition metal phosphides for the catalytic hydrodeoxygenation of waste oils into green diesel
,”
Catalysts
9
(
3
),
293
(
2019
).
45.
E. J.
Popczun
 et al, “
Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction
,”
J. Am. Chem. Soc.
135
(
25
),
9267
9270
(
2013
).
46.
L.-A.
Stern
 et al, “
Ni2p as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles
,”
Energy Environ. Sci.
8
(
8
),
2347
2351
(
2015
).
47.
J.
Chang
 et al, “
Surface oxidized cobalt-phosphide nanorods as an advanced oxygen evolution catalyst in alkaline solution
,”
ACS Catal.
5
(
11
),
6874
6878
(
2015
).
48.
Z.
Liu
 et al, “
Low-temperature synthesis of honeycomb CuP2@ C in molten ZnCl2 salt for high-performance lithium Ion batteries
,”
Angew. Chem.
132
(
5
),
1991
1995
(
2020
).
49.
J.
Jin
 et al, “
MOF-derived hierarchical CoP nanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithium–sulfur batteries
,”
J. Mater. Chem. A
8
(
6
),
3027
3034
(
2020
).
50.
C.
An
 et al, “
Facile synthesis and superior supercapacitor performances of Ni2 P/rGO nanoparticles
,”
RSC Adv.
3
(
14
),
4628
4633
(
2013
).
51.
S.
Cao
 et al, “
Metal phosphides as co-catalysts for photocatalytic and photoelectrocatalytic water splitting
,”
ChemSusChem
10
(
22
),
4306
4323
(
2017
).
52.
N.
Coleman
, Jr.
 et al, “
Phosphorus-rich metal phosphides: Direct and tin flux-assisted synthesis and evaluation as hydrogen evolution electrocatalysts
,”
Inorg. Chem.
58
(
8
),
5013
5024
(
2019
).
53.
G.-A.
Li
 et al, “
Phosphorus-rich copper phosphide nanowires for field-effect transistors and lithium-ion batteries
,”
ACS Nano
10
(
9
),
8632
8644
(
2016
).
54.
J.
Ackermann
and
A.
Wold
, “
The preparation and characterization of the cobalt skutterudites CoP3, CoAs3 and CoSb3
,”
J. Phys. Chem. Solids
38
(
9
),
1013
1016
(
1977
).
55.
T.
Müller
 et al, “
Scanning force and friction microscopy at highly oriented polycrystalline graphite and CuP2 (100) surfaces in ultrahigh vacuum
,”
J. Vac. Sci. Technol. B
14
(
2
),
1296
1301
(
1996
).
56.
J.
Gou
 et al, “
Easily-prepared bimetallic metal phosphides as high-performance electrode materials for asymmetric supercapacitor and hydrogen evolution reaction
,”
Int. J. Hydrogen Energy
44
(
50
),
27214
27223
(
2019
).
57.
D. J.
Rensel
 et al, “
Composition-directed Fe X Mo2−XP bimetallic catalysts for hydrodeoxygenation reactions
,”
Catal. Sci. Technol.
7
(
9
),
1857
1867
(
2017
).
58.
V.
Jain
 et al, “
Mechanistic insights into hydrodeoxygenation of phenol on bimetallic phosphide catalysts
,”
Catal. Sci. Technol.
8
(
16
),
4083
4096
(
2018
).
59.
D. J.
Rensel
 et al, “
Highly selective bimetallic FeMoP catalyst for C–O bond cleavage of aryl ethers
,”
J. Catal.
305
,
256
263
(
2013
).
60.
L. f.
Hong
 et al, “
Recent progress of transition metal phosphides for photocatalytic hydrogen evolution
,”
ChemSusChem.
14
(
2
),
539
557
(
2021
).
61.
J.
Scaranto
and
H.
Idriss
, “
DFT studies of bulk and surfaces of the electrocatalyst cobalt phosphide CoP2
,”
Chem. Phys. Lett.
737
,
100008
(
2019
).
62.
N.
Gong
 et al, “
Structural diversity and electronic properties of 3D transition metal tetraphosphides, TMP4 (TM = V, Cr, Mn, and Fe)
,”
Inorg. Chem.
57
(
15
),
9385
9392
(
2018
).
63.
M. R.
Khan
 et al, “
Novel electronic properties of monoclinic MP4 (M = Cr, Mo, W) compounds with or without topological nodal line
,”
Sci. Rep.
10
(
1
),
11502
(
2020
).
64.
R.
Singh
 et al, “
Facile synthesis of highly conducting and mesoporous carbon aerogel as platinum support for PEM fuel cells
,”
Int. J. Hydrogen Energy
42
(
16
),
11110
11117
(
2017
).
65.
Y.
Shao
,
X.
Shi
, and
H.
Pan
, “
Electronic, magnetic, and catalytic properties of thermodynamically stable two-dimensional transition-metal phosphides
,”
Chem. Mater.
29
(
20
),
8892
8900
(
2017
).
66.
J.
Yin
 et al, “
Novel elastic, lattice dynamics and thermodynamic properties of metallic single-layer transition metal phosphides: 2H-M 2P (Mo2P, W2P, Nb2P and Ta2P)
,”
J. Phys.: Condens. Matter
30
(
13
),
135701
(
2018
).
67.
F. W.
Eagle
,
R. A.
Rivera-Maldonado
, and
B. M.
Cossairt
, “
Surface chemistry of metal phosphide nanocrystals
,”
Annu. Rev. Mater. Res.
51
,
541
564
(
2021
).
68.
Y.
Zhong
 et al, “
Transition metal carbides and nitrides in energy storage and conversion
,”
Adv. Sci.
3
(
5
),
1500286
(
2016
).
69.
J.
Wu
 et al, “
Structure, stability, mechanical and electronic properties of Fe–P binary compounds by first-principles calculations
,”
RSC Adv.
5
(
100
),
81943
81956
(
2015
).
70.
A. B.
Laursen
 et al, “
Climbing the volcano of electrocatalytic activity while avoiding catalyst corrosion: Ni3P, a hydrogen evolution electrocatalyst stable in both acid and alkali
,”
ACS Catal.
8
(
5
),
4408
4419
(
2018
).
71.
A. F.
Harper
,
M. L.
Evans
, and
A. J.
Morris
, “
Computational investigation of copper phosphides as conversion anodes for lithium-Ion batteries
,”
Chem. Mater.
32
(
15
),
6629
6639
(
2020
).
72.
S.
Dong
,
J.
Furdyna
, and
X.
Liu
, “
Prospects for rare-earth-based dilute magnetic semiconductor alloys and hybrid magnetic rare-earth/semiconductor heterostructures
,” in
Rare Earth and Transition Metal Doping of Semiconductor Materials
(
Elsevier
,
2016
), pp.
129
167
.
73.
J.
Wu
,
J.-H.
Li
, and
Y.-X.
Yu
, “
Stabilities of group-III phosphide (MP, M = B, Al, Ga and In) monolayers in oxygen and water environments
,”
Phys. Chem. Chem. Phys.
22
(
14
),
7633
7642
(
2020
).
74.
Y.
Kadioglu
, “
Ballistic transport and optical properties of a new half-metallic monolayer: Vanadium phosphide
,”
Mater. Sci. Eng.
268
,
115111
(
2021
).
75.
Y.
Han
 et al, “
Promotion effect of metal phosphides towards electrocatalytic and photocatalytic water splitting
,”
EcoMat
3
,
e12097
(
2021
).
76.
N.
Kumar
 et al, “
Extremely high conductivity observed in the triple point topological metal MoP
,”
Nat. Commun.
10
(
1
),
2475
(
2019
).
77.
Z.
Ge
 et al, “
A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides
,”
J. Mater. Sci.
55
,
14081
14104
(
2020
).
78.
C.
Zhang
 et al, “
Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction
,”
Chem. Sci.
8
(
4
),
2769
2775
(
2017
).
79.
L.
Yang
 et al, “
Topotactic conversion of α-Fe2O3 nanowires into FeP as a superior fluorosensor for nucleic acid detection: Insights from experiment and theory
,”
Anal. Chem.
89
(
4
),
2191
2195
(
2017
).
80.
E.
Bekaert
 et al, “
Direct correlation between the 31P MAS NMR response and the electronic structure of some transition metal phosphides
,”
J. Phys. Chem.
112
(
51
),
20481
20490
(
2008
).
81.
H.
Liang
 et al, “
Plasma-assisted synthesis of NiCoP for efficient overall water splitting
,”
Nano Lett.
16
(
12
),
7718
7725
(
2016
).
82.
C.
Zhang
 et al, “
Plasma-assisted synthesis of three-dimensional hierarchical NiFeOx/NiFeP electrocatalyst for highly enhanced water oxidation in alkaline media
,”
Int. J. Hydrogen Energy
44
(
48
),
26118
26127
(
2019
).
83.
Y.
Lu
 et al, “
MOF-derived cobalt–nickel phosphide nanoboxes as electrocatalysts for the hydrogen evolution reaction
,”
Nanoscale
11
(
44
),
21259
21265
(
2019
).
84.
A.
Wang
 et al, “
Magnetotransport properties of MoP2
,”
Phys. Rev. B
96
(
19
),
195107
(
2017
).
85.
M.
Pi
 et al, “
Phase-controlled synthesis and comparative study of α-and β-WP2 submicron particles as efficient electrocatalysts for hydrogen evolution
,”
Electrochim. Acta
216
,
304
311
(
2016
).
86.
M.
Pi
 et al, “
Facile preparation of semimetallic WP2 as a novel photocatalyst with high photoactivity
,”
RSC Adv.
6
(
19
),
15724
15730
(
2016
).
87.
B.
Mortazavi
 et al, “
Theoretical realization of Mo2P; a novel stable 2D material with superionic conductivity and attractive optical properties
,”
Appl. Mater. Today
9
,
292
299
(
2017
).
88.
Z.
Cheng
 et al, “
Ti2 P monolayer as a high performance 2-D electrode material for ion batteries
,”
Phys. Chem. Chem. Phys.
22
(
33
),
18480
18487
(
2020
).
89.
A.
Laursen
 et al, “
Nanocrystalline Ni5P4: A hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media
,”
Energy Environ. Sci.
8
(
3
),
1027
1034
(
2015
).
90.
J.
Kibsgaard
and
T. F.
Jaramillo
, “
Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction
,”
Angew. Int. Ed., Chem.
53
(
52
),
14433
14437
(
2014
).
91.
Y.
Wang
 et al, “
Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting
,”
Nano Today
15
,
26
55
(
2017
).
92.
R.
Jun
 et al, “
Density functional theory study on crystal nickel phosphides
,”
J. Fuel Chem. Technol.
35
(
4
),
458
464
(
2007
).
93.
R. B.
Wexler
,
J. M. P.
Martirez
, and
A. M.
Rappe
, “
Stable phosphorus-enriched (0001) surfaces of nickel phosphides
,”
Chem. Mater.
28
(
15
),
5365
5372
(
2016
).
94.
J.-H.
Pöhls
 et al, “
Metal phosphides as potential thermoelectric materials
,”
J. Mater. Chem. C
5
(
47
),
12441
12456
(
2017
).
95.
M.
Miyata
and
M.
Koyano
, “
Transport properties of binary phosphide AgP 96. Denoting high Hall mobility and low lattice thermal conductivity
,”
Mater. Res. Express
9
(
5
),
055901
(
2022
).
96.
Y.
Liu
 et al, “
Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing
,”
J. Mater. Chem. B
5
(
10
),
1901
1904
(
2017
).
97.
Y.
Zhu
 et al, “
A nickel–cobalt bimetallic phosphide nanocage as an efficient electrocatalyst for nonenzymatic sensing of glucose
,”
Mikrochim. Acta
187
(
2
),
100
(
2020
).
98.
T.
Chen
 et al, “
Three-dimensional Ni2P nanoarray: An efficient catalyst electrode for sensitive and selective nonenzymatic glucose sensing with high specificity
,”
Anal. Chem.
88
(
16
),
7885
7889
(
2016
).
99.
Y.
Zhang
 et al, “
MOF-derived porous Ni2P/graphene composites with enhanced electrochemical properties for sensitive nonenzymatic glucose sensing
,”
ACS Appl. Mater. Interfaces
10
(
45
),
39151
39160
(
2018
).
100.
M.
Roushani
,
M.
Sarabaegi
, and
H.
Hosseini
, “
Flexible NiP2@ hollow N-doped nanocapsules/carbon nanofiber as a freestanding electrode for glucose sensing
,”
Compos. Commun.
25
,
100686
(
2021
).
101.
L.
Xie
 et al, “
Monolithically integrated copper phosphide nanowire: An efficient electrocatalyst for sensitive and selective nonenzymatic glucose detection
,”
Sens. Actuators, B
244
,
11
16
(
2017
).
102.
L.
Takacs
,
S. K.
Mandal
, and
E.
A
, “
Preparation of some metal phosphides by ball milling
,”
Mater. Sci. Eng. A
304
,
429
433
(
2001
).
103.
Z.
Zhang
 et al, “
Copx synthesis and lithiation by ball-milling for anode materials of lithium ion cells
,”
Solid State Ionics
176
(
7–8
),
693
697
(
2005
).
104.
A. R.
Kucernak
and
V. N. N.
Sundaram
, “
Nickel phosphide: The effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium
,”
J. Mater. Chem. A
2
(
41
),
17435
17445
(
2014
).
105.
X.
Liu
 et al, “
Ball milling-assisted synthesis of ultrasmall ruthenium phosphide for efficient hydrogen evolution reaction
,”
Catalysis
9
(
3
),
240
(
2019
).
106.
H.
Xue
 et al, “
Scalable and energy-efficient synthesis of Co x P for overall water splitting in alkaline media by high energy ball milling
,”
Sustainable Energy Fuels
4
(
4
),
1723
1729
(
2020
).
107.
M.
Islam
 et al, “
Structural and magnetic properties of ball-milled powders of (Fe1− xMnx) 75P15C10 met-glass
,”
AIP Adv.
11
(
2
),
025036
(
2021
).
108.
R.
Samal
 et al, “
Two-dimensional transition metal phosphorous trichalcogenides (MPX3): A review on emerging trends, current state and future perspectives
,”
J. Mater. Chem. A
9
(
5
),
2560
2591
(
2021
).
109.
M.
Fujii
,
H.
Iwanaga
, and
S.
Motojima
, “
CVD growth and morphology of transition-metal phosphides
,”
J. Cryst. Growth
166
(
1–4
),
99
103
(
1996
).
110.
S. T.
Lewkebandara
and
C. H.
Winter
,
Thin Films of Early Transition Metal Monophosphides
(
Wiley Online Library
,
1996
).
111.
C.
Blackman
 et al, “
Chemical vapour deposition of group Vb metal phosphide thin films
,”
J. Mater. Chem.
13
(
8
),
1930
1935
(
2003
).
112.
C. S.
Blackman
 et al, “
Atmospheric-pressure chemical vapor deposition of group IVb metal phosphide thin films from tetrakisdimethylamidometal complexes and cyclohexylphosphine
,”
Chem. Mater.
16
(
6
),
1120
1125
(
2004
).
113.
B.
Padavala
 et al, “
CVD growth and properties of boron phosphide on 3C-SiC
,”
J. Cryst. Growth
449
,
15
21
(
2016
).
114.
C.
Ye
 et al, “
One-step CVD synthesis of carbon framework wrapped Co2P as a flexible electrocatalyst for efficient hydrogen evolution
,”
J. Mater. Chem. A
5
(
17
),
7791
7795
(
2017
).
115.
K. N.
Dinh
 et al, “
Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion
,”
Nano Today
25
,
99
121
(
2019
).
116.
T.
Hu
 et al, “
Ultrathin molybdenum phosphide films as high-efficiency electrocatalysts for hydrogen evolution reaction
,”
Mater. Res. Express
6
(
1
),
016418
(
2018
).
117.
F.
Cao
 et al, “
Growth of 2D MoP single crystals on liquid metals by chemical vapor deposition
,”
Sci. China Mater.
64
(
5
),
1182
1188
(
2021
).
118.
S.
Wei
 et al, “
One-step synthesis of a self-supported copper phosphide nanobush for overall water splitting
,”
ACS Omega
1
(
6
),
1367
1373
(
2016
).
119.
S.
Kumar
 et al, “
Three-dimensional graphene-decorated copper-phosphide (Cu3P@ 3DG) heterostructure as an effective electrode for a supercapacitor
,”
Front. Mater.
7
,
30
(
2020
).
120.
Q.
Sheng
 et al, “
Understanding the reduction of transition-metal phosphates to transition-metal phosphides by combining temperature-programmed reduction and infrared spectroscopy
,”
Angew. Chem. Int. Ed.
133
(
20
),
11280
11283
(
2021
).
121.
W.
Li
,
B.
Dhandapani
, and
S. T.
Oyama
, “
Molybdenum phosphide: A novel catalyst for hydrodenitrogenation
,”
Chem. Lett.
27
(
3
),
207
208
(
1998
).
122.
P.
Clark
,
X.
Wang
, and
S.
Ted Oyama
, “
Characterization of silica-supported molybdenum and tungsten phosphide hydroprocessing catalysts by 31P nuclear magnetic resonance spectroscopy
,”
J. Catal.
207
(
2
),
256
265
(
2002
).
123.
V.
Zuzaniuk
and
R.
Prins
, “
Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts
,”
J. Catal.
219
(
1
),
85
96
(
2003
).
124.
S. Y.
Lee
 et al, “
Preparation of silica-supported nickel molybdenum phosphides by temperature-programmed reduction technique
,”
Solid State Phenom.
124–126
,
1765
1768
(
2007
).
125.
G.
Sun
 et al, “
Synthesis, characterization and hydrotreating performance of supported tungsten phosphide catalysts
,”
Front. Chem. Eng. China
2
(
2
),
155
164
(
2008
).
126.
S.
Gong
 et al, “
Dibenzothiophene hydrodesulfurization over MoP/SiO2 catalyst prepared with sol-gel method
,”
Korean J. Chem. Eng.
27
(
5
),
1419
1422
(
2010
).
127.
Y.
Wang
 et al, “
Metal phosphides as high-performance hydrotreating catalysts
,”
J. Jpn. Pet. Inst.
58
(
4
),
197
204
(
2015
).
128.
M.
Usman
 et al, “
Highly selective and stable hydrogenation of heavy aromatic-naphthalene over transition metal phosphides
,”
Sci. China Chem.
58
(
4
),
738
746
(
2015
).
129.
A.
Berenguer
 et al, “
Evaluation of transition metal phosphides supported on ordered mesoporous materials as catalysts for phenol hydrodeoxygenation
,”
Green Chem.
18
(
7
),
1938
1951
(
2016
).
130.
Y.
Peng
 et al, “
Yeast biomass-induced Co2P/biochar composite for sulfonamide antibiotics degradation through peroxymonosulfate activation
,”
Environ. Pollut.
268
,
115930
(
2021
).
131.
S.
Gong
 et al, “
Thiophene hydrodesulfurization over an MoP catalyst prepared With different phosphide sources
,”
Energy Sources, Part A
33
(
7
),
641
648
(
2011
).
132.
H.
Song
 et al, “
Influence of rare earth metals on structure and performance of Ni2P/MCM-41 hydrodesulfurisation catalysts
,”
Prog. React. Kinet. Mech.
41
(
1
),
48
56
(
2016
).
133.
F.
Geng
 et al, “
Bimetallic Ru–Mo phosphide catalysts for the hydrogenation of CO2 to methanol
,”
Ind. Eng. Chem. Res.
59
(
15
),
6931
6943
(
2020
).
134.
A.
Ramanan
and
P. K.
Sharma
, “
Toward rational synthesis of transition metal oxides
,”
Proc. Ind. Acad. Sci. Chem. Sci.
107
(
3
),
171
177
(
1995
).
135.
H.
Huang
 et al, “
Hydrothermal synthesis of cobalt phosphide nanoparticles
,”
Ceram. Int.
38
(
2
),
1713
1715
(
2012
).
136.
B.
Wang
 et al, “
Hydrothermal synthesis method of nickel phosphide nanoparticles
,”
Appl. Nanosci.
2
(
4
),
423
427
(
2012
).
137.
B.
Wang
 et al, “
Hydrothermal synthesis of cobalt–nickel bimetallic phosphides
,”
Appl. Nanosci.
2
(
4
),
481
485
(
2012
).
138.
J.
Xu
 et al, “
Template-Free synthesis of hollow iron phosphide–phosphate composite nanotubes for Use as active and stable oxygen evolution electrocatalysts
,”
ACS Appl. Nano Mater.
1
(
2
),
617
624
(
2018
).
139.
J.
Li
and
C.
Chen
, “
One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery
,”
Mater. Res. Express
5
(
1
),
015502
(
2018
).
140.
Y.
Lv
 et al, “
Reduced graphene oxide-supported cobalt phosphide nanoflowers via in situ hydrothermal synthesis as Pt-free effective electrocatalysts for oxygen reduction reaction
,”
Nano
13
(
05
),
1850047
(
2018
).
141.
M.
Yang
 et al, “
Synthesis of metal phosphide nanoparticles supported on porous N-doped carbon derived from spirulina for universal-pH hydrogen evolution
,”
ChemSusChem.
13
(
2
),
351
359
(
2020
).
142.
J.
Cai
 et al, “
N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides
,”
Sci. Adv.
6
(
1
),
eaaw8113
(
2020
).
143.
D.
Yin
 et al, “
Cobalt phosphide (Co2P) with notable electrocatalytic activity designed for sensitive and selective enzymeless bioanalysis of hydrogen peroxide
,”
Nanoscale Res. Lett.
16
(
1
),
1
10
(
2021
).
144.
X.
Wang
 et al, “
Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis
,”
Mater. Today Energy
22
,
100850
(
2021
).
145.
M.
Streckova
 et al, “
Nickel and nickel phosphide nanoparticles embedded in electrospun carbon fibers as favourable electrocatalysts for hydrogen evolution
,”
Chem. Eng. J.
303
,
167
181
(
2016
).
146.
L.
Han
 et al, “
Electrospun hetero-CoP/FeP embedded in porous carbon nanofibers: Enhanced Na+ kinetics and specific capacity
,”
Nanoscale
12
(
48
),
24477
24487
(
2020
).
147.
H.
Li
 et al, “
DNA as template and P-source for synthesis of Co2P/Co2N core–shell nanostructure embedded in N-doped carbon nanofiber derived from electrospun precursor for oxygen evolution reaction
,”
Electrochim. Acta
367
,
137562
(
2021
).
148.
Z.
Wang
 et al, “
Ternary NiCoP nanosheet array on a Ti mesh: A high-performance electrochemical sensor for glucose detection
,”
Chem. Commun.
52
(
100
),
14438
14441
(
2016
).
149.
X.
Xiao
 et al, “
Porous flower-like Ni5P4 for non-enzymatic electrochemical detection of glucose
,”
Mater. Chem. Phys.
240
,
122202
(
2020
).
150.
C. X.
Guo
and
C. M.
Li
, “
Direct electron transfer of glucose oxidase and biosensing of glucose on hollow sphere-nanostructured conducting polymer/metal oxide composite
,”
Phys. Chem. Chem. Phys.
12
(
38
),
12153
12159
(
2010
).
151.
J.
Zhu
 et al, “
CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors
,”
RSC Adv.
1
(
6
),
1020
1025
(
2011
).
152.
Y.
Zhao
 et al, “
Hyper-branched Cu@ Cu2O coaxial nanowires mesh electrode for ultra-sensitive glucose detection
,”
ACS Appl. Mater. Interfaces
7
(
30
),
16802
16812
(
2015
).
153.
T. R.
Paudel
 et al, “
Doping rules and doping prototypes in A2BO4 spinel oxides
,”
Adv. Funct. Mater.
21
(
23
),
4493
4501
(
2011
).
154.
B.
You
 et al, “
Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting
,”
ACS Catal.
6
(
2
),
714
721
(
2016
).
155.
C.
Deng
 et al, “
Templated-preparation of a three-dimensional molybdenum phosphide sponge as a high performance electrode for hydrogen evolution
,”
J. Mater. Chem. A
4
(
1
),
59
66
(
2016
).
156.
Y.
Zhang
 et al, “
Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes
,”
Front. Chem. Sci. Eng.
12
(
3
),
494
508
(
2018
).
157.
Y.
Tan
 et al, “
Versatile nanoporous bimetallic phosphides towards electrochemical water splitting
,”
Energy Environ. Sci.
9
(
7
),
2257
2261
(
2016
).
158.
K.
Puttananjegowda
,
A.
Taksi
, and
S. J. J. o. T. E. S.
Thomas
, “
Perspective—Electrospun nanofibrous structures for electrochemical enzymatic glucose biosensing: A perspective
,”
J. Electrochem. Soc.
167
(
3
),
037553
(
2020
).
159.
L. C.
Clark
, Jr.
and
C.
Lyons
, “
Electrode systems for continuous monitoring in cardiovascular surgery
,”
Ann. N.Y. Acad. Sci.
102
(
1
),
29
45
(
1962
).
160.
C. G.
Morales-Guio
,
L.-A.
Stern
, and
X.
Hu
, “
Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution
,”
Chem. Soc. Rev.
43
(
18
),
6555
6569
(
2014
).
161.
Y.
Shi
and
B.
Zhang
, “
Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction
,”
Chem. Soc. Rev.
45
(
6
),
1529
1541
(
2016
).
162.
A.
Meng
 et al, “
Bimetal nickel–cobalt phosphide directly grown on commercial graphite substrate by the one-step electrodeposition as efficient electrocatalytic electrode
,”
Prog. Natl. Sci. Mater. Sci.
30
(
4
),
461
468
(
2020
).
163.
N.
Thakur
,
D.
Mandal
, and
T. C.
Nagaiah
, “
Highly sensitive non-enzymatic electrochemical glucose sensor surpassing water oxidation interference
,”
J. Mater. Chem. B
9
(
40
),
8399
8405
(
2021
).
164.
X.
Xu
 et al, “
Active temperature regulation and teamed boronate affinity-facilitated microelectrode module for blood glucose detection in physiological environment
,”
Sens. Actuators, B
324
,
128720
(
2020
).
165.
G.
Zang
 et al, “
Copper nanowires-MOFs-graphene oxide hybrid nanocomposite targeting glucose electro-oxidation in neutral medium
,”
Electrochim. Acta
277
,
176
184
(
2018
).
166.
S.
Ernst
 et al, “
The electrooxidation of glucose in phosphate buffer solutions: Part I. Reactivity and kinetics below 350 mV/RHE
,”
J. Electroanal. Chem. Interfacial Electrochem.
100
(
1–2
),
173
183
(
1979
).
167.
S.
Masoomi-Godarzi
 et al, “
Highly stable and selective non-enzymatic glucose biosensor using carbon nanotubes decorated by Fe3O4 nanoparticles
,”
J. Electrochem. Soc.
161
(
1
),
B19
(
2013
).
168.
X.
Wang
 et al, “
A graphene–cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets
,”
Chem. Commun.
48
(
52
),
6490
6492
(
2012
).
169.
Y.
Zhang
 et al, “
Assembly of Ni (OH)2 nanoplates on reduced graphene oxide: A two dimensional nanocomposite for enzyme-free glucose sensing
,”
J. Mater. Chem.
21
(
42
),
16949
16954
(
2011
).
170.
T.
Zhe
 et al, “
An integrated anode based on porous Ni/Cu (OH)2 nanospheres for non-enzymatic glucose sensing
,”
Microchem. J.
151
,
104197
(
2019
).
171.
Q.-Q.
Sun
 et al, “
Analysis of cobalt phosphide (CoP) nanorods designed for non-enzyme glucose detection
,”
Analyst
141
(
1
),
256
260
(
2016
).
172.
A. L.
Rinaldi
and
R.
Carballo
, “
Chemical, impedimetric non-enzymatic glucose sensor based on nickel hydroxide thin film onto gold electrode
,”
Sens. Actuators, B
228
,
43
52
(
2016
).
173.
Y. R.
Zheng
 et al, “
An efficient CeO2/CoSe2 nanobelt composite for electrochemical water oxidation
,”
Small
11
(
2
),
182
188
(
2015
).
174.
J.
Tian
 et al, “
Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14
,”
J. Am. Chem. Soc.
136
(
21
),
7587
7590
(
2014
).
175.
R. S.
Babu
,
P.
Prabhu
, and
S. S.
Narayanan
, “
Enzyme-free selective determination of H2O2 and glucose using functionalized CuNP-modified graphite electrode in room temperature ionic liquid medium
,”
RSC Adv.
4
(
88
),
47497
47504
(
2014
).
176.
H.
Mei
 et al, “
Nonenzymatic electrochemical sensor based on Fe@ Pt core–shell nanoparticles for hydrogen peroxide, glucose and formaldehyde
,”
Sens. Actuators, B
223
,
68
75
(
2016
).
177.
A.
Soni
and
S. K. J. B.
Jha
, “
A paper strip based non-invasive glucose biosensor for salivary analysis
,”
Bioelectron. Biosens.
67
,
763
768
(
2015
).
178.
K. K.
Lee
 et al, “
CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor
,”
Electrochem. Commun.
20
,
128
132
(
2012
).
179.
D.
Thatikayala
 et al, “
Progress of advanced nanomaterials in the non-enzymatic electrochemical sensing of glucose and H2O2
,”
Biosensors
10
(
11
),
151
(
2020
).
180.
S.
Moolayadukkam
 et al, “
Unveiling the effect of the crystalline phases of iron oxyhydroxide for highly sensitive and selective detection of dopamine
,”
Dalton Trans.
50
(
38
),
13497
13504
(
2021
).
181.
V.
Archana
 et al, “
Hierarchical CuO/NiO-carbon nanocomposite derived from metal organic framework on cello tape for the flexible and high performance nonenzymatic electrochemical glucose sensors
,”
ACS Sustainable Chem. Eng.
7
(
7
),
6707
6719
(
2019
).
182.
C.
Yu
 et al, “
Porous HKUST-1 derived CuO/Cu2O shell wrapped Cu (OH)2 derived CuO/Cu2O core nanowire arrays for electrochemical nonenzymatic glucose sensors with ultrahigh sensitivity
,”
Appl. Surf. Sci.
439
,
11
17
(
2018
).
183.
J.
Chen
 et al, “
Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum
,”
Talanta
184
,
136
142
(
2018
).
184.
S. A.
Abrori
 et al, “
Metal-organic-framework FeBDC-derived Fe3O4 for non-enzymatic electrochemical detection of glucose
,”
Sensors
20
(
17
),
4891
(
2020
).
185.
Y.
Song
 et al, “
Porous Co nanobeads/rGO nanocomposites derived from rGO/Co-metal organic frameworks for glucose sensing
,”
Sens. Actuators, B
220
,
1056
1063
(
2015
).
186.
H.
Mei
 et al, “
A nanocomposite consisting of gold nanobipyramids and multiwalled carbon nanotubes for amperometric nonenzymatic sensing of glucose and hydrogen peroxide
,”
Microchim. Acta
186
(
4
),
235
(
2019
).
187.
T.
Choi
 et al, “
Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing
,”
Biosens. Bioelectron.
63
,
325
330
(
2015
).
188.
K.
Qiu
 et al, “
Facile preparation of nickel nanoparticle-modified carbon nanotubes with application as a nonenzymatic electrochemical glucose sensor
,”
Anal. Lett.
49
(
4
),
568
578
(
2016
).
189.
R.
Prasad
and
B. R.
Bhat
, “
Chemical, multi-wall carbon nanotube–NiO nanoparticle composite as enzyme-free electrochemical glucose sensor
,”
Sens. Actuators, B
220
,
81
90
(
2015
).
190.
I.
Shackery
 et al, “
Sensitivity enhancement in nickel hydroxide/3D-graphene as enzymeless glucose detection
,”
Electroanalysis
27
(
10
),
2363
2370
(
2015
).
191.
W.-Y.
Jeon
,
Y.-B.
Choi
, and
H.-H.
Kim
, “
Disposable non-enzymatic glucose sensors using screen-printed nickel/carbon composites on indium tin oxide electrodes
,”
Sensors
15
(
12
),
31083
31091
(
2015
).
192.
M.
Hjiri
 et al, “
Electrochemical properties of a novel Ni-doped nanoporous carbon
,”
Mater. Lett.
160
,
452
455
(
2015
).
193.
R. M.
Abdel Hameed
, “
Amperometric glucose sensor based on nickel nanoparticles/carbon Vulcan XC-72R
,”
Biosens. Bioelectron.
47
,
248
257
(
2013
).
194.
V.
Veeramani
 et al, “
Heteroatom-enriched porous carbon/nickel oxide nanocomposites as enzyme-free highly sensitive sensors for detection of glucose
,”
Sens. Actuators, B
221
,
1384
1390
(
2015
).
195.
N.
Akhtar
 et al, “
Fabrication of photo-electrochemical biosensors for ultrasensitive screening of mono-bioactive molecules: The effect of geometrical structures and crystal surfaces
,”
J. Mater. Chem. B
5
(
39
),
7985
7996
(
2017
).
196.
C.-Y.
Ko
 et al, “
A high performance non-enzymatic glucose sensor based on nickel hydroxide modified nitrogen-incorporated nanodiamonds
,”
Analyst
138
(
11
),
3201
3208
(
2013
).
197.
Z. D.
Gao
 et al, “
Nickel hydroxide nanoparticle activated semi-metallic TiO2 nanotube arrays for non-enzymatic glucose sensing
,”
Chem. A Eur. J.
19
(
46
),
15530
15534
(
2013
).
198.
H.
Huo
,
Y.
Zhao
, and
C.
Xu
, “
3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection
,”
J. Mater. Chem. A
2
(
36
),
15111
15117
(
2014
).
199.
P.
Sivasakthi
 et al, “
Pulse electrodeposited nickel-indium tin oxide nanocomposite as an electrocatalyst for non-enzymatic glucose sensing
,”
Mater. Sci. Eng. C
58
,
782
789
(
2016
).
200.
L.-C.
Jiang
and
W.-D.
Zhang
, “
A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode
,”
Biosens. Bioelectron.
25
(
6
),
1402
1407
(
2010
).
201.
E.
Sharifi
 et al, “
Shape-dependent electron transfer kinetics and catalytic activity of NiO nanoparticles immobilized onto DNA modified electrode: Fabrication of highly sensitive enzymeless glucose sensor
,”
Biosens. Bioelectron.
56
,
313
319
(
2014
).
202.
A.
Rengaraj
 et al, “
Electrodeposition of flower-like nickel oxide on CVD-grown graphene to develop an electrochemical non-enzymatic biosensor
,”
J. Mater. Chem. B
3
(
30
),
6301
6309
(
2015
).
203.
R. A.
Soomro
 et al, “
Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures
,”
Sens. Actuators, B
209
,
966
974
(
2015
).
204.
T.
Marimuthu
,
S.
Mohamad
, and
Y.
Alias
, “
Needle-like polypyrrole–NiO composite for non-enzymatic detection of glucose
,”
Synth. Met.
207
,
35
41
(
2015
).
205.
X.
Zhao
 et al, “
Electroless decoration of macroscale foam with nickel nano-spikes: A scalable route toward efficient catalyst electrodes
,”
Electrochem. Commun.
65
,
39
43
(
2016
).
206.
B.
Zhao
 et al, “
NiO mesoporous nanowalls grown on RGO coated nickel foam as high performance electrodes for supercapacitors and biosensors
,”
Electrochim. Acta
192
,
205
215
(
2016
).
207.
S.
Felix
 et al, “
Electrocatalytic activity of Cu2O nanocubes based electrode for glucose oxidation
,”
J. Chem. Sci.
126
(
1
),
25
32
(
2014
).
208.
B.
Qi
 et al, “
Three-dimensional macroporous Cu electrode: Preparation and electrocatalytic activity for nonenzymatic glucose detection
,”
J. Electroanal. Chem.
700
,
24
29
(
2013
).
209.
X.
Gao
 et al, “
Sub-nanometer sized Cu6 (GSH) 3 clusters: One-step synthesis and electrochemical detection of glucose
,”
J. Mater. Chem. C
3
(
16
),
4050
4056
(
2015
).
210.
Y.
Ni
 et al, “
Hydrothermal fabrication of hierarchical CuO nanoflowers for dual-function amperometric sensing of hydrogen peroxide and glucose
,”
New J. Chem.
43
(
47
),
18629
18636
(
2019
).
211.
Y.
Zhang
 et al, “
CuO nanowires based sensitive and selective non-enzymatic glucose detection
,”
Sens. Actuators, B
191
,
86
93
(
2014
).
212.
M.-m.
Guo
 et al, “
Electrochemical fabrication of stalactite-like copper micropillar arrays via surface rebuilding for ultrasensitive nonenzymatic sensing of glucose
,”
Electrochim. Acta
151
,
340
346
(
2015
).
213.
S.
Zhao
 et al, “
A non-enzymatic glucose amperometric biosensor based on a simple one-step electrodeposition of Cu microdendrites onto single-walled carbon nanohorn-modified electrode
,”
J. Solid State Electrochem.
19
(
3
),
831
839
(
2015
).
214.
D.
Jiang
 et al, “
Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene
,”
Biosens. Bioelectron.
54
,
273
278
(
2014
).
215.
C.
Wei
 et al, “
Nitrogen-doped carbon–copper nanohybrids as electrocatalysts in H2O2 and glucose sensing
,”
ChemElectroChem
1
(
4
),
799
807
(
2014
).
216.
K. E.
Toghill
and
R. G.
Compton
, “
Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation
,”
Int. J. Electrochem. Sci.
5
(
9
),
1246
1301
(
2010
).
217.
Y.
Liu
 et al, “
Copper metal–organic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose
,”
Nanoscale
6
(
19
),
10989
10994
(
2014
).
218.
M.
Mohapatra
and
S.
Anand
, “
Synthesis and applications of nano-structured iron oxides/hydroxides—A review
,”
Int. J. Eng. Sci. Technol.
2
(
8
),
127
146
(
2010
).
219.
S. T.
Nair
 et al, “
Enhanced mechanical and thermal performance of multiwalled carbon nanotubes-filled polypropylene/natural rubber thermoplastic elastomers
,”
New J. Chem.
45
(
11
),
4963
4976
(
2021
).
220.
U.
Guharoy
 et al, “
Mechanistic insights into selective CO2 conversion via RWGS on transition metal phosphides: A DFT study
,”
J. Phys. Chem. C
123
(
37
),
22918
22931
(
2019
).
221.
H.
Zhang
 et al, “
Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting
,”
Adv. Funct. Mater.
30
(
34
),
2003261
(
2020
).
222.
W.
Tang
,
S.
Chill
, and
G.
Henkelman
,
Bader Charge Analysis
(
The Univeristy of Texas and Austin
,
1970
).
223.
C.
Fonseca Guerra
 et al, “
Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis
,”
J. Comput. Chem.
25
(
2
),
189
210
(
2004
).
224.
M.
Fields
 et al, “
Scaling relations for adsorption energies on doped molybdenum phosphide surfaces
,”
ACS Catal.
7
(
4
),
2528
2534
(
2017
).
225.
D.
Bahamon
 et al, “
A DFT study of the adsorption energy and electronic interactions of the SO2 molecule on a CoP hydrotreating catalyst
,”
RSC Adv.
11
(
5
),
2947
2957
(
2021
).
226.
A.
Azouaoui
 et al, “
First principles calculations of structural, electronic, elastic, vibrational, and thermodynamic properties of TMPs compounds (TM = Cr, Mo)
,”
Comput. Condens. Matter
27
,
e00541
(
2021
).
227.
M.
Marsman
 et al, “
Hybrid functionals applied to extended systems
,”
J. Phys.: Condens. Matter
20
(
6
),
064201
(
2008
).
228.
W.
Chen
and
A.
Pasquarello
, “
Accurate band gaps of extended systems via efficient vertex corrections in G W
,”
Phys. Rev. B
92
(
4
),
041115
(
2015
).
229.
R.
Ponnusamy
,
B.
Chakraborty
, and
C. S.
Rout
, “
Pd-doped WO3 nanostructures as potential glucose sensor with insight from electronic structure simulations
,”
J. Phys. Chem. B
122
(
10
),
2737
2746
(
2018
).
230.
K. K.
Naik
 et al, “
Superior non-enzymatic glucose sensing properties of Ag-/Au-NiCO2O4 nanosheets with insight from electronic structure simulations
,”
Analyst
143
(
2
),
571
579
(
2018
).
231.
K. K.
Naik
 et al, “
Enhanced nonenzymatic glucose-sensing properties of electrodeposited NiCo2O4–Pd nanosheets: Experimental and DFT investigations
,”
ACS Appl. Mater. Interfaces
9
(
28
),
23894
23903
(
2017
).
232.
Y.
Men
 et al, “
Trends in alkaline hydrogen evolution activity on cobalt phosphide electrocatalysts doped with transition metals
,”
Cell Rep. Phys. Sci.
1
(
8
),
100136
(
2020
).
233.
T.
Liu
 et al, “
Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter
,”
Adv. Energy Mater.
7
(
15
),
1700020
(
2017
).
234.
R.
Zhang
 et al, “
Al-Doped CoP nanoarray: A durable water-splitting electrocatalyst with superhigh activity
,”
Nanoscale
9
(
14
),
4793
4800
(
2017
).
235.
J.
Chang
 et al, “
Sulfur-doped nickel phosphide nanoplates arrays: A monolithic electrocatalyst for efficient hydrogen evolution reactions
,”
ACS Appl. Mater. Interfaces
10
(
31
),
26303
26311
(
2018
).
236.
L.
Zhang
 et al, “
Oxygen-incorporated NiMoP2 nanowire arrays for enhanced hydrogen evolution activity in alkaline solution
,”
ACS Appl. Energy Mater.
1
(
10
),
5482
5489
(
2018
).
237.
Y.
Men
 et al, “
Tailoring the electronic structure of Co2P by N doping for boosting hydrogen evolution reaction at all pH values
,”
ACS Catal.
9
(
4
),
3744
3752
(
2019
).
238.
Y.
Ma
 et al, “
Highly efficient catalytic activity for the hydrogen evolution reaction on pristine and monovacancy defected WP systems: A first-principles investigation
,”
Phys. Chem. Chem. Phys.
20
(
20
),
13757
13764
(
2018
).
239.
Y.
Li
 et al, “
Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis
,”
Sci. Adv.
6
(
44
),
eabb4197
(
2020
).
240.
Y.
Pan
 et al, “
Core–shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting
,”
J. Am. Chem. Soc.
140
(
7
),
2610
2618
(
2018
).
241.
A.
Kumar
 et al, “
Modulating interfacial charge density of NiP2–FeP2 via coupling with metallic Cu for accelerating alkaline hydrogen evolution
,”
ACS Energy Lett.
6
(
2
),
354
363
(
2021
).
242.
X.
Ding
 et al, “
Interface engineering of Co(OH)2/Ag/FeP hierarchical superstructure as efficient and robust electrocatalyst for overall water splitting
,”
ACS Appl. Mater. Interfaces
11
(
8
),
7936
7945
(
2019
).
243.
S.
Hussain
 et al, “
A highly sensitive enzymeless glucose sensor based on 3D graphene–Cu hybrid electrodes
,”
New J. Chem.
39
(
9
),
7481
7487
(
2015
).
244.
Z.
Haghparas
 et al, “
Highly sensitive non-enzymatic electrochemical glucose sensor based on dumbbell-shaped double-shelled hollow nanoporous CuO/ZnO microstructures
,”
Sci. Rep.
11
(
1
),
344
(
2021
).
245.
W. S.
Wang
 et al,
Sensors
11
(
9
),
8593
8610
(
2011
).
246.
T.
Liu
 et al,
Adv. Mater.
30
(
46
),
1803590
(
2018
).
247.
X. Y.
Zhang
 et al,
Electrochim. Acta
323
,
134798
(
2018
).
You do not currently have access to this content.