The revolution in artificial intelligence (AI) brings up an enormous storage and data processing requirement. Large power consumption and hardware overhead have become the main challenges for building next-generation AI hardware. To mitigate this, neuromorphic computing has drawn immense attention due to its excellent capability for data processing with very low power consumption. While relentless research has been underway for years to minimize the power consumption in neuromorphic hardware, we are still a long way off from reaching the energy efficiency of the human brain. Furthermore, design complexity and process variation hinder the large-scale implementation of current neuromorphic platforms. Recently, the concept of implementing neuromorphic computing systems in cryogenic temperature has garnered intense interest thanks to their excellent speed and power metric. Several cryogenic devices can be engineered to work as neuromorphic primitives with ultra-low demand for power. Here, we comprehensively review the cryogenic neuromorphic hardware. We classify the existing cryogenic neuromorphic hardware into several hierarchical categories and sketch a comparative analysis based on key performance metrics. Our analysis concisely describes the operation of the associated circuit topology and outlines the advantages and challenges encountered by the state-of-the-art technology platforms. Finally, we provide insight to circumvent these challenges for the future progression of research.

1.
A. A.
Chien
and
V.
Karamcheti
, “
Moore’s law: The first ending and a new beginning
,”
Computer
46(12), 48–53 (
2013
).
2.
C.
Mack
, “
The multiple lives of Moore’s law
,”
IEEE Spectr.
52(4), 31 (
2015
).
3.
Q.
Xie
,
J.
Xu
, and
Y.
Taur
, “
Review and critique of analytic models of MOSFET short-channel effects in subthreshold
,”
IEEE Trans. Electron Devices
59(6), 1569–1579 (
2012
).
4.
E.
Masanet
,
A.
Shehabi
,
N.
Lei
,
S.
Smith
, and
J.
Koomey
, “
Recalibrating global data center energy-use estimates
,”
Science
367(6481), 984–986 (
2020
).
5.
A.
Bogdanov
,
A.
Degtyarev
,
D.
Guschanskiy
,
K.
Lysov
,
N.
Ananieva
,
N.
Zalutskaya
, and
N.
Neznanov
, “
Analog-digital approach in human brain modeling
,” in
Proceedings—2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017
(IEEE,
2017
).
6.
S. X.
Moffett
,
S. M.
O’Malley
,
S.
Man
,
D.
Hong
, and
J. V.
Martin
, “
Dynamics of high frequency brain activity
,”
Sci. Rep.
7(1), 1–5 (
2017
).
7.
I.
Chakraborty
,
A.
Jaiswal
,
A. K.
Saha
,
S. K.
Gupta
, and
K.
Roy
, “
Pathways to efficient neuromorphic computing with non-volatile memory technologies
,”
Appl. Phys. Rev.
7(2), 021308 (
2020
).
8.
E. M.
Izhikevich
, “
Simple model of spiking neurons
,”
IEEE Trans. Neural Networks
14(6), 1569–1572 (
2003
).
9.
W.
Maass
, “
Networks of spiking neurons: The third generation of neural network models
,”
Neural Networks
10(9), 1659–1671 (
1997
).
10.
A.
Tavanaei
,
M.
Ghodrati
,
S. R.
Kheradpisheh
,
T.
Masquelier
, and
A.
Maida
, “
Deep learning in spiking neural networks
,”
Neural Networks
111, 47–63 (
2019
).
11.
X.
Wang
,
X.
Lin
, and
X.
Dang
, “
Supervised learning in spiking neural networks: A review of algorithms and evaluations
,”
Neural Networks
125, 258–280 (
2020
).
12.
J. L.
Lobo
,
J.
Del Ser
,
A.
Bifet
, and
N.
Kasabov
, “
Spiking neural networks and online learning: An overview and perspectives
,”
Neural Networks
121
, 88–100 (
2020
).
13.
H. S.
Choi
,
D. H.
Wee
,
H.
Kim
,
S.
Kim
,
K. C.
Ryoo
,
B. G.
Park
, and
Y.
Kim
, “
3-D floating-gate synapse array with spike-time-dependent plasticity
,”
IEEE Trans. Electron Devices
65(1), 101–107 (
2018
).
14.
M.
Prezioso
,
F.
Merrikh Bayat
,
B.
Hoskins
,
K.
Likharev
, and
D.
Strukov
, “
Self-adaptive spike-time-dependent plasticity of metal-oxide memristors
,”
Sci. Rep.
6(1), 21331 (
2016
).
15.
R.
Gopalakrishnan
and
A.
Basu
, “
Triplet spike time-dependent plasticity in a floating-gate synapse
,”
IEEE Trans. Neural Networks Learn. Syst.
28(4), 778–790 (
2017
).
16.
A.
Sengupta
,
A.
Banerjee
, and
K.
Roy
, “
Hybrid spintronic-CMOS spiking neural network with on-chip learning: Devices, circuits, and systems
,”
Phys. Rev. Appl.
52(4), 31 (
2016
).
17.
D.
Ma
,
J.
Shen
,
Z.
Gu
,
M.
Zhang
,
X.
Zhu
,
X.
Xu
,
Q.
Xu
,
Y.
Shen
, and
G.
Pan
, “
Darwin: A neuromorphic hardware co-processor based on spiking neural networks
,”
J. Syst. Archit.
6(6), 064003 (
2017
).
18.
A. R.
Young
,
M.
Dean
,
J. S.
Plank
, and
G. S.
Rose
, “
A review of spiking neuromorphic hardware communication systems
,”
IEEE Access
7
, 135606–135620 (
2019
).
19.
L.
Xia
,
B.
Li
,
T.
Tang
,
P.
Gu
,
P. Y.
Chen
,
S.
Yu
,
Y.
Cao
,
Y.
Wang
,
Y.
Xie
, and
H.
Yang
, “
MNSIM: Simulation platform for memristor-based neuromorphic computing system
,”
IEEE Trans. Comput. Des. Integr. Circuits Syst.
52(5), 1009–1022 (
2018
).
20.
M. A.
Zidan
,
J. P.
Strachan
, and
W. D.
Lu
, “
The future of electronics based on memristive systems
,”
Nat. Electron.
1(1), 22–29 (
2018
).
21.
B.
Yan
,
Y.
Chen
, and
H.
Li
, “
Challenges of memristor based neuromorphic computing system
,”
Sci. China Inf. Sci.
61, 1–3 (
2018
).
22.
C.
Sung
,
H.
Hwang
, and
I. K.
Yoo
, “
Perspective: A review on memristive hardware for neuromorphic computation
,”
J. Appl. Phys.
124(15), 151903 (
2018
).
23.
J.
Hong
,
X.
Li
,
N.
Xu
,
H.
Chen
,
S.
Cabrini
,
S.
Khizroev
,
J.
Bokor
, and
L.
You
, “
A dual magnetic tunnel junction-based neuromorphic device
,”
Adv. Intell. Syst.
52(4), 31 (
2020
).
24.
J.
Cai
,
B.
Fang
,
L.
Zhang
,
W.
Lv
,
B.
Zhang
,
T.
Zhou
,
G.
Finocchio
, and
Z.
Zeng
, “
Voltage-controlled spintronic stochastic neuron based on a magnetic tunnel junction
,”
Phys. Rev. Appl.
2(12), 2000143 (
2019
).
25.
J.
Torrejon
,
M.
Riou
,
F. A.
Araujo
,
S.
Tsunegi
,
G.
Khalsa
,
D.
Querlioz
,
P.
Bortolotti
,
V.
Cros
,
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
M. D.
Stiles
, and
J.
Grollier
, “
Neuromorphic computing with nanoscale spintronic oscillators
,”
Nature
547(7664), 428–431 (
2017
).
26.
J.
Singh
, “
Implementation of memristor towards better hardware/software security design
,”
Trans. Electr. Electron. Mater.
22(1), 10–22 (
2021
).
27.
N. K.
Upadhyay
,
H.
Jiang
,
Z.
Wang
,
S.
Asapu
,
Q.
Xia
, and
J.
Joshua Yang
, “
Emerging memory devices for neuromorphic computing
,”
Adv. Mater. Technol.
4(4), 1800589 (
2019
).
28.
J.
Zhu
,
T.
Zhang
,
Y.
Yang
, and
R.
Huang
, “
A comprehensive review on emerging artificial neuromorphic devices
,”
Appl. Phys. Rev.
52(1), 011312 (
2020
).
29.
C.
Hutter
,
E. A.
Tholén
,
K.
Stannigel
,
J.
Lidmar
, and
D. B.
Haviland
, “
Josephson junction transmission lines as tunable artificial crystals
,”
Phys. Rev. B
83, 014511 (
2011
).
30.
A.
Chen
,
Z.
Zhang
,
G.
Ma
,
N.
Liu
,
C.-Y.
Lin
,
W.-C.
Chena
,
T.-C.
Chang
, and
H.
Wang
, “
Comprehensive regulation of the threshold oscillation for neuromorphic systems based on cryogenic performance of NbO2 device
,”
IEEE Electron Device Lett.
42
(
5
),
692
695
(
2021
).
31.
T.
Yamazaki
,
J.
Igarashi
, and
H.
Yamaura
, “
Human-scale brain simulation via supercomputer: A case study on the cerebellum
,”
Neuroscience
83(1), 014511 (
2021
).
32.
A.
Parent
and
M. B.
Carpenter
, Carpenter’s Human Neuroanatomy (1996), p. 1011.
33.
P. J.
Harrison
,
N.
Freemantle
, and
J. R.
Geddes
, “
Meta-analysis of brain weight in schizophrenia
,”
Schizophr. Res.
64(1), 25–34 (
2003
).
34.
K. P.
Cosgrove
,
C. M.
Mazure
, and
J. K.
Staley
, “
Evolving knowledge of sex differences in brain structure, function, and chemistry
,”
Biol. Psychiat.
62(8), 847–855 (
2007
).
35.
E.
Miranda
and
J.
Suñé
, “
Memristors for neuromorphic circuits and artificial intelligence applications
,”
Materials
13(4), 938 (
2020
).
36.
J.
Wu
,
Y.
Chua
, and
H.
Li
, “
A biologically plausible speech recognition framework based on spiking neural networks
,” in
Proceedings of the International Joint Conference on Neural Networks
(IEEE,
2018
).
37.
R.
Yang
,
H. M.
Huang
, and
X.
Guo
, “
Memristive synapses and neurons for bioinspired computing
,”
Adv. Electron. Mater.
5(9), 1900287 (
2019
).
38.
Biorealistic Spiking Neural Network on FPGA (IEEE, 2013).
39.
P.
Crotty
,
D.
Schult
, and
K.
Segall
, “
Josephson junction simulation of neurons
,”
Phys. Rev. E
82
(
1
),
18
(
2010
).
40.
J.
Vista
and
A.
Ranjan
, “
A simple floating MOS-memristor for high-frequency applications
,”
IEEE Trans. Very Large Scale Integr. Syst.
27(5), 1186–1195 (
2019
).
41.
A. Basu, L. Deng, C. Frenkel, and X. Zhang, “Spiking neural network integrated circuits: A review of trends and future directions” in 2022 IEEE Custom Integrated Circuits Conference (CICC) (IEEE, 2022), pp. 1–8.
42.
P. A. Merolla, J. V Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, and B. Brezzo, “A million spiking-neuron integrated circuit with a scalable communication network and interface,”
Science
345(6197), 668–673 (2014).
43.
J.
Hasler
and
B.
Marr
, “
Finding a roadmap to achieve large neuromorphic hardware systems
,”
Front. Neurosci.
7, 118 (
2013
).
44.
W. F.
Clark
,
B.
El-Kareh
,
R. G.
Pires
,
S. L.
Titcomb
, and
R. L.
Anderson
, “
Low temperature CMOS—A brief review
,”
IEEE Trans. Components Hybrids Manuf. Technol.
15
(3), 397–404 (
1992
).
45.
J.
Grollier
,
D.
Querlioz
,
K. Y.
Camsari
,
K.
Everschor-Sitte
,
S.
Fukami
, and
M. D.
Stiles
, “
Neuromorphic spintronics
,”
Nat. Electron.
3(7), 360–370 (
2020
).
46.
Y.
Beilliard
,
F.
Paquette
,
F.
Brousseau
,
S.
Ecoffey
,
F.
Alibart
, and
D.
Drouin
, “
Investigation of resistive switching and transport mechanisms of Al2O3/TiO2-x memristors under cryogenic conditions (1.5 K)
,”
AIP Adv.
10(2), 025305 (
2020
).
47.
S.
Lashkare
,
S.
Chouhan
,
T.
Chavan
,
A.
Bhat
,
P.
Kumbhare
, and
U.
Ganguly
, “
PCMO RRAM for integrate-and-fire neuron in spiking neural networks
,”
IEEE Electron Device Lett.
39(4), 484–487 (
2018
).
48.
S.
Park
,
A.
Sheri
,
J.
Kim
,
J.
Noh
,
J.
Jang
,
M.
Jeon
,
B.
Lee
,
B. R.
Lee
,
B. H.
Lee
, and
H.
Hwang
, “
Neuromorphic speech systems using advanced ReRAM-based synapse
,” in
Technical Digest—International Electron Devices Meeting, IEDM
(IEEE,
2013
).
49.
K. K.
Likharev
and
J.
Lukens
, “
Dynamics of Josephson junctions and circuits
,”
Phys. Today
41(1), 122 (
1988
).
50.
K. Y.
Arutyunov
and
J. S.
Lehtinen
, “
Quantum phase slip as a dual process to Josephson tunneling
,”
J. Phys. Conf. Ser.
1190(1), 012003 (
2019
).
51.
J. S.
Lehtinen
,
K.
Zakharov
, and
K. Y.
Arutyunov
, “
Coulomb blockade and Bloch oscillations in superconducting Ti nanowires
,”
Phys. Rev. Lett.
109(18), 187001 (
2012
).
52.
G.
Krylov
and
E. G.
Friedman
, Single Flux Quantum Integrated Circuit Design (Springer, 2022).
53.
R. L.
Fagaly
, “
Superconducting quantum interference device instruments and applications
Rev. Sci. Instrum.
77
(
10
),
101101
(
2006
).
54.
K. K.
Likharev
, “Introduction to the dynamics of Josephson junctions” in
Moscow Izdatel Nauka
(
1985
), p.
320
.
55.
P.
Wang
,
A. I.
Khan
, and
S.
Yu
, “
Cryogenic behavior of NbO2 based threshold switching devices as oscillation neurons
,”
Appl. Phys. Lett.
116
(
16
),
162108
(
2020
).
56.
S.
Nellutla
,
G. W.
Morley
,
J.
Van Tol
,
M.
Pati
, and
N. S.
Dalal
, “
Electron spin relaxation and 39K pulsed ENDOR studies on Cr5+-doped K3NbO8 at 9.7 and 240 GHz
,”
Phys. Rev. B
78(5), 054426 (
2008
).
57.
M. J.
Deen
, “
Digital characteristics of CMOS devices at cryogenic temperatures
,”
IEEE J. Solid-State Circuits
24(1), 158–164 (
1989
).
58.
D.
Marković
,
A.
Mizrahi
,
D.
Querlioz
, and
J.
Grollier
, “
Physics for neuromorphic computing
,”
Nat. Rev. Phys.
2
(9), 499–510 (
2020
).
59.
K.
Das
, “
Low temperature microelectronics design for digital readout of single electron transistor electrometry
,”
Fac. Eng. Sch. Electr. Eng. Telecommun.
Ph.D. thesis, UNSW Faculty (
2013
).
60.
M. L.
Schneider
,
C. A.
Donnelly
, and
S. E.
Russek
, “
Tutorial: High-speed low-power neuromorphic systems based on magnetic Josephson junctions
,”
J. Appl. Phys.
124
(
16
),
161102
(
2018
).
61.
R. L.
Kautz
, “
Picosecond pulses on superconducting striplines
,”
J. Appl. Phys.
49(1), 308–314 (
1978
).
62.
B. D.
Josephson
, “
Possible new effects in superconductive tunnelling
,”
Phys. Lett.
1(7), 251–253 (
1962
).
63.
T.
Li
,
J.
Gallop
,
L.
Hao
, and
E.
Romans
, “
Ballistic Josephson junctions based on CVD graphene
,”
Supercond. Sci. Technol.
31(4), 045004 (
2018
).
64.
M. L.
Schneide
,
C. A.
Donnelly
,
S. E.
Russek
,
B.
Baek
,
M. R.
Pufall
,
P. F.
Hopkins
, and
W. H.
Rippard
, “
Energy-efficient single-flux-quantum based neuromorphic computing
,” in
2017 IEEE International Conference Rebooting Computing ICRC 2017—Proceedings
(IEEE,
2017
), Vol. 2017, pp.
1
4
.
65.
M. L.
Schneider
,
C. A.
Donnelly
,
S. E.
Russek
,
B.
Baek
,
M. R.
Pufall
,
P. F.
Hopkins
,
P. D.
Dresselhaus
,
S. P.
Benz
, and
W. H.
Rippard
, Applied Sciences and Engineering Ultralow Power Artificial Synapses Using Nanotextured Magnetic Josephson Junctions (IEEE, 2018).
66.
M. L.
Schneider
,
C. A.
Donnelly
,
I. W.
Haygood
,
A.
Wynn
,
S. E.
Russek
,
M. A.
Castellanos-Beltran
,
P. D.
Dresselhaus
,
P. F.
Hopkins
,
M. R.
Pufall
, and
W. H.
Rippard
, “
Synaptic weighting in single flux quantum neuromorphic computing
,”
Sci. Rep.
10(1), 934 (
2020
).
67.
U. S.
Goteti
and
R. C.
Dynes
, “
Superconducting neural networks with disordered Josephson junction array synaptic networks and leaky integrate-and-fire loop neurons
,”
J. Appl. Phys.
129
(
7
),
073901
(
2021
).
68.
M. L.
Schneider
and
K.
Segall
, “
Fan-out and fan-in properties of superconducting neuromorphic circuits
,”
J. Appl. Phys.
128
(
21
),
214903
(
2020
).
69.
I.
Burman
,
A.
Hore
,
A.
Chakraborty
,
S.
Bandyopadhyay
, and
S.
Chakrabarti
, Implementation of a Spiking Neuron in CMOS (IEEE, 2021).
70.
O. V.
Astafiev
,
L. B.
Ioffe
,
S.
Kafanov
,
Y. A.
Pashkin
,
K. Y.
Arutyunov
,
D.
Shahar
,
O.
Cohen
, and
J. S.
Tsai
, “
Coherent quantum phase slip
,”
Nature
484(7394), 355–358 (
2012
).
71.
J. E.
Mooij
and
Y. V.
Nazarov
, “
Superconducting nanowires as quantum phase-slip junctions
,”
Nat. Phys.
2(3), 169–172 (
2006
).
72.
N.
Giordano
, “
Evidence for macroscopic quantum tunneling in one-dimensional superconductors
,”
Phys. Rev. Lett.
61(18), 2137 (
1988
).
73.
U. S.
Goteti
and
M. C.
Hamilton
, “
SPICE model implementation of quantum phase-slip junctions
,”
Electron. Lett.
51(13), 979–981 (
2015
).
74.
R.
Cheng
,
U. S.
Goteti
, and
M. C.
Hamilton
, “
Spiking neuron circuits using superconducting quantum phase-slip junctions
,”
J. Appl. Phys.
124
(
15
), 152126 (
2018
).
75.
R.
Cheng
,
U. S.
Goteti
, and
M. C.
Hamilton
, “
Superconducting neuromorphic computing using quantum phase-slip junctions
,”
IEEE Trans. Appl. Supercond.
29
(
5
),
15
(
2019
).
76.
R.
Cheng
,
U. S.
Goteti
, and
M. C.
Hamilton
, “
High-speed and low-power superconducting neuromorphic circuits based on quantum phase-slip junctions
,”
IEEE Trans. Appl. Supercond.
31(5), 1–8 (
2021
).
77.
E.
Toomey
,
K.
Segall
,
M.
Castellani
,
M.
Colangelo
,
N.
Lynch
, and
K. K.
Berggren
, “
Superconducting nanowire spiking element for neural networks
,”
Nano Lett.
20
(
11
),
8059
8066
(
2020
).
78.
E.
Toomey
,
K.
Segall
, and
K. K.
Berggren
, “A power efficient artificial neuron using superconducting nanowires,” arXiv (2019).
79.
E.
Toomey
,
Q. Y.
Zhao
,
A. N.
McCaughan
, and
K. K.
Berggren
, “
Frequency pulling and mixing of relaxation oscillations in superconducting nanowires
,”
Phys. Rev. Appl.
9(6), 064021 (
2018
).
80.
J.
Hakulinen
,
T.
Keskinen
,
M.
Turunen
, and
S.
Siltanen
, “
Design space for voice-based professional reporting
,”
Multimodal Technol. Interact.
5(1), 3 (
2021
).
81.
E.
Toomey
,
K.
Segall
, and
K. K.
Berggren
, “
Design of a power efficient artificial neuron using superconducting nanowires
,”
Front. Neurosci.
13, 933 (
2019
).
82.
M. M.
Islam
,
S.
Alam
,
M. S.
Hossain
, and
A.
Aziz
, “
Dynamically reconfigurable cryogenic spiking neuron based on superconducting memristor
,” in
2022 IEEE 22nd International Conference on Nanotechnology (NANO)
(
IEEE
,
2022
), pp.
307
310
.
83.
S.
Peotta
and
M.
Di Ventra
, “
Superconducting memristors
,”
Phys. Rev. Appl.
2
(
3
),
034011
(
2014
).
84.
S.
Alam
,
M. S.
Hossain
, and
A.
Aziz
, “
A cryogenic memory array based on superconducting memristors
,”
Appl. Phys. Lett.
119
(
8
),
082602
(
2021
).
85.
J. M.
Shainline
,
S. M.
Buckley
,
R. P.
Mirin
, and
S. W.
Nam
, “
Superconducting optoelectronic circuits for neuromorphic computing
,”
Phys. Rev. Appl.
7
(
3
),
1
27
(
2017
).
86.
T.
Yamamoto
, “
Quantum information processing with superconducting nanowire single-photon detectors
,”
IEICE Transactions on Electronics.
102(3), 224–229 (
2019
).
87.
H.
Shibata
,
T.
Hiraki
,
T.
Tsuchizawa
,
K.
Yamada
,
Y.
Tokura
, and
S.
Matsuo
, “
A waveguide-integrated superconducting nanowire single-photon detector with a spot-size converter on a Si photonics platform
,”
Supercond. Sci. Technol.
32(3), 034001 (
2019
).
88.
S.
Ferrari
,
C.
Schuck
, and
W.
Pernice
, “
Waveguide-integrated superconducting nanowire single-photon detectors
,”
Nanophotonics
7(11), 1725–1758 (
2018
).
89.
S.
Buckley
,
A. N.
McCaughan
,
J.
Chiles
,
R. P.
Mirin
,
S. W.
Nam
,
J. M.
Shainline
,
G.
Bruer
,
J. S.
Plank
, and
C. D.
Schuman
, “
Design of superconducting optoelectronic networks for neuromorphic computing
,” in
2018 IEEE International Conference on Rebooting Computing, ICRC 2018
(IEEE,
2019
), Vol. 1, pp.
1
7
.
90.
S. M.
Buckley
,
A. N.
Tait
,
G.
Moody
,
S.
Olson
,
J.
Herman
,
K. L.
Silverman
,
S. P.
Rao
,
S. W.
Nam
,
R. P.
Mirin
, and
J. M.
Shainline
, “Optimization of photoluminescence from W centers in silicon-on-insulator,” arXiv (2019), pp. 2020–2021.
91.
J. M.
Shainline
,
S. M.
Buckley
,
A. N.
Mccaughan
,
J. T.
Chiles
,
A.
Jafari Salim
,
M.
Castellanos-Beltran
,
C. A.
Donnelly
,
M. L.
Schneider
,
R. P.
Mirin
, and
S. W.
Nam
, “
Superconducting optoelectronic loop neurons
,”
J. Appl. Phys.
126
(
4
),
044902
(
2019
).
92.
J. M.
Shainline
,
A. N.
McCaughan
,
S. M.
Buckley
,
C. A.
Donnelly
,
M.
Castellanos-Beltran
,
M. L.
Schneider
,
R. P.
Mirin
, and
S. W.
Nam
, “
Superconducting optoelectronic neurons III: Synaptic plasticity
,” arXiv:1805.01937 (
2018
).
93.
I. I.
Soloviev
,
A. E.
Schegolev
,
N. V.
Klenov
,
S. V.
Bakurskiy
,
M. Y.
Kupriyanov
,
M. V.
Tereshonok
,
A. V.
Shadrin
,
V. S.
Stolyarov
, and
A. A.
Golubov
, “
Adiabatic superconducting artificial neural network: Basic cells
,”
J. Appl. Phys.
124
(
15
),
152113
(
2018
).
94.
S.
Kumar
,
J. P.
Strachan
, and
R. S.
Williams
, “
Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing
,”
Nature
548(7667), 318–321 (
2017
).
95.
Y. S.
Kim
,
Y.
Cho
,
P. M.
Nogales
, and
S. K.
Jeong
, “
NbO2 as a noble zero-strain material for Li-ion batteries: Electrochemical redox behavior in a nonaqueous solution
,”
Energies
12(15), 2960 (
2019
).
96.
R. L.
Fagaly
, “
Superconducting quantum interference device instruments and applications
,”
Rev. Sci. Instrum.
77(10), 101101 (
2006
).
97.
P. Y.
Chen
,
J. S.
Seo
,
Y.
Cao
, and
S.
Yu
, “
Compact oscillation neuron exploiting metal-insulator-transition for neuromorphic computing
,” in
IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
(ACM,
2016
).
98.
M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday, and H. Wang “Loihi: A neuromorphic manycore processor with on-chip learning,”
IEEE Micro
38(1), 82–99 (2018).
99.
M. V. DeBole, B. Taba, A. Amir, F. Akopyan, A. Andreopoulos, W. P. Risk, and D. S. Modha, “TrueNorth: Accelerating from zero to 64 million neurons in 10 years,”
Computer
52(5), 20–29 (2019).
100.
D. S.
Holmes
,
A. L.
Ripple
, and
M. A.
Manheimer
, “
Energy-Efficient superconducting computing—Power budgets and requirements
,”
IEEE Trans. Appl. Supercond.
23
(
3
),
1701610
(
2013
).
101.
O. A.
Mukhanov
,
D.
Gupta
,
A. M.
Kadin
, and
V. K.
Semenov
, “
Superconductor analog-to-digital converters
,” in
Proceedings of the IEEE
(IEEE,
2004
).
102.
M.
Radparvar
,
A.
Talalaevskii
,
R. J.
Webber
,
A. M.
Kadin
,
E. K.
Track
,
R. A.
De Graaf
,
T. W.
Nixon
, and
D. L.
Rothman
, “
Superconductor analog-to-digital converter for high-resolution magnetic resonance imaging
,”
IEEE Trans. Appl. Supercond.
25(3), 1–5 (
2015
).
103.
D.
Gupta
,
A. A.
Inamdar
,
D. E.
Kirichenko
,
A. M.
Kadin
, and
O. A.
Mukhanov
, “
Superconductor analog-to-digital converters and their applications
,” in
IEEE MTT-S International Microwave Symposium Digest
(IEEE,
2011
).
104.
M.-W.
Kwon
,
M.-H.
Baek
,
S.
Hwang
,
S.
Kim
, and
B.-G.
Park
, “
Spiking neural networks with unsupervised learning based on STDP using resistive synaptic devices and analog CMOS neuron circuit
,”
J. Nanosci. Nanotechnol.
18(9), 6588–6592 (
2018
).
105.
C. L.
Ayala
,
T.
Tanaka
,
R.
Saito
,
M.
Nozoe
,
N.
Takeuchi
, and
N.
Yoshikawa
, “
MANA: A monolithic adiabatic integration architecture microprocessor using 1.4-zJ/op unshunted superconductor Josephson junction devices
,”
IEEE J. Solid-State Circuits
56(4), 1152–1165 (
2021
).
106.
S.
Alam
,
M. S.
Hossain
, and
A.
Aziz
, “
A non-volatile cryogenic random-access memory based on the quantum anomalous Hall effect
,”
Sci. Rep.
11(1), 1–9 (
2021
).
107.
S.
Peotta
and
M.
Di Ventra
, “
Superconducting memristors
,”
Phys. Rev. Appl.
2(3), 034001 (
2014
).
You do not currently have access to this content.