We report first-principles molecular-dynamics calculations with the simulated annealing technique that clarify the atomic and electronic structures of the semiconductor–insulator interfaces consisting of GaN (0001) and (0001¯) faces and the amorphous (Al2O3)1x(SiO2)x. We confirm that the obtained interfaces are free from dangling bonds, as predicted by our previous calculations, irrespective of the thickness of the amorphous (Al2O3)1x(SiO2)x layer. This is due to the high atomic density and large mean coordination number near the interfaces caused by atomic diffusion from inside of the insulator to the interfaces. The calculated local density of states of the (Al2O3)1x(SiO2)x/GaN system quantitatively shows clear band offsets and, more importantly, the absence of deep states in the GaN energy gap. Interestingly, we find that the band alignment causing the offset is not abrupt at the interface but varies gradually near the interface, predicting the existence of transition layers. We determine the thicknesses of the transition layers in the (Al2O3)1x(SiO2)x/GaN system to be about 10 Å. We argue that those structural characteristics prevent the formation of the dangling-bond origin carrier traps at the interface, and this is a superior feature of the (Al2O3)1x(SiO2)x as a gate oxide for the GaN-based metal–oxide–semiconductor devices.

1.
B. J.
Baliga
, “
Semiconductors for high-voltage, vertical channel field-effect transistors
,”
J. Appl. Phys.
53
,
1759
(
1982
).
2.
B. J.
Baliga
, “
Gallium nitride devices for power electronic applications
,”
Semicond. Sci. Technol.
28
,
074011
(
2013
).
3.
H.
Sakurai
,
M.
Omori
,
S.
Yamada
,
Y.
Furukawa
,
H.
Suzuki
,
T.
Narita
,
K.
Kataoka
,
M.
Horita
,
M.
Bockowski
,
J.
Suda
, and
T.
Kachi
, “
Highly effective activation of Mg-implanted p-type GaN by ultra-high-pressure annealing
,”
Appl. Phys. Lett.
115
,
142104
(
2019
).
4.
K.
Sumida
,
K.
Hirukawa
,
H.
Sakurai
,
K.
Sierakowski
,
M.
Horita
,
M.
Bockowski
,
T.
Kachi
, and
J.
Suda
, “
Effect of annealing time and pressure on electrical activation and surface morphology of Mg-implanted GaN annealed at 1300 °C in ultra-high-pressure nitrogen ambient
,”
Appl. Phys. Express
14
,
121004
(
2021
).
5.
K.
Hirukawa
,
K.
Sumida
,
H.
Sakurai
,
H.
Fujikura
,
M.
Horita
,
Y.
Otoki
,
K.
Sierakowski
,
M.
Bockowski
,
T.
Kachi
, and
J.
Suda
, “
Isochronal annealing study of Mg-implanted p-type GaN activated by ultra-high-pressure annealing
,”
Appl. Phys. Express
14
,
056501
(
2021
).
6.
R.
Kajitani
,
K.
Tanaka
,
M.
Ogawa
,
H.
Ishida
,
M.
Ishida
, and
T.
Ueda
, “
Novel high-current density GaN-based normally off transistor with tensile-strained quaternary InAlGaN barrier
,”
Jpn. J. Appl. Phys.
54
,
04DF09
(
2015
).
7.
H.
Ishida
,
R.
Kajitani
,
Y.
Kinoshita
,
H.
Umeda
,
S.
Ujita
,
M.
Ogawa
,
K.
Tanaka
,
T.
Morita
,
S.
Tamura
,
M.
Ishida
, and
T.
Ueda
, “GaN-based semiconductor devices for future power switching systems,” in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016), p. 20.4.1.
8.
M.
Meneghini
,
C.
De Santi
,
I.
Abid
,
M.
Buffolo
,
M.
Cioni
,
R. A.
Khadar
,
L.
Nela
,
N.
Zagni
,
A.
Chini
,
F.
Medjdoub
,
G.
Meneghesso
,
G.
Verzellesi
,
E.
Zanoni
, and
E.
Matioli
, “
GaN-based power devices: Physics, reliability, and perspectives
,”
J. Appl. Phys.
130
,
181101
(
2021
).
9.
J.
Robertson
and
B.
Falabretti
, “
Band offsets of high K gate oxides on III-V semiconductors
,”
J. Appl. Phys.
100
,
014111
(
2006
).
10.
C.
Bae
and
G.
Lucovsky
, “
Low-temperature preparation of GaN-SiO2 interfaces with low defect density. I. Two-step remote plasma-assisted oxidation-deposition process
,”
J. Vac. Sci. Technol. A
22
,
2402
(
2004
).
11.
P. D.
Ye
,
B.
Yang
,
K. K.
Ng
,
J.
Bude
,
G. D.
Wilk
,
S.
Halder
, and
J. C. M.
Hwang
, “
GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric
,”
Appl. Phys. Lett.
86
,
063501
(
2005
).
12.
W.
Huang
,
T. P.
Chow
, and
T.
Khan
, “
Experimental demonstration of enhancement mode GaN MOSFETs
,”
Phys. Stat. Solidi A
204
,
2064
(
2007
).
13.
Y. C.
Chang
,
W. H.
Chang
,
H. C.
Chiu
,
L. T.
Tung
,
C. H.
Lee
,
K. H.
Shiu
,
M.
Hong
,
J.
Kwo
,
J. M.
Hong
, and
C. C.
Tsai
, “
Inversion-channel GaN metal-oxide-semiconductor field-effect transistor with atomic-layer-deposited Al2O3 as gate dielectric
,”
Appl. Phys. Lett.
93
,
053504
(
2008
).
14.
E.
Ogawa
and
T.
Hashizume
, “
Variation of chemical and photoluminescence properties of Mg-Doped GaN caused by high-temperature process
,”
Jpn. J. Appl. Phys.
50
,
021002
(
2011
).
15.
N.
Taoka
,
T.
Kubo
,
T.
Yamada
,
T.
Egawa
, and
M.
Shimizu
, “
Impacts of oxidants in atomic layer deposition method on Al2O3/GaN interface properties
,”
Jpn. J. Appl. Phys.
57
,
01AD04
(
2018
).
16.
N. X.
Truyen
,
N.
Taoka
,
A.
Ohta
,
K.
Makihara
,
H.
Yamada
,
T.
Takahashi
,
M.
Ikeda
,
M.
Shimizu
, and
S.
Miyazaki
, “
High thermal stability of abrupt SiO2/GaN interface with low interface state density
,”
Jpn. J. Appl. Phys.
57
,
04FG11
(
2018
).
17.
T.
Yamada
,
K.
Watanabe
,
M.
Nozaki
,
H.
Yamada
,
T.
Takahashi
,
M.
Shimizu
,
A.
Yoshigoe
,
T.
Hosoi
, and
H.
Watanabe
, “
Control of Ga-oxide interlayer growth and Ga diffusion in SiO2/GaN stacks for high-quality GaN-based metal–oxide–semiconductor devices with improved gate dielectric reliability
,”
Appl. Phys. Express
11
,
015701
(
2018
).
18.
K.
Ito
,
K.
Tomita
,
D.
Kikuta
,
M.
Horita
, and
T.
Narita
, “
Analysis of channel mobility in GaN-based metal-oxide-semiconductor field-effect transistors
,”
J. Appl. Phys.
129
,
084502
(
2021
).
19.
K.
Ito
,
D.
Kikuta
,
T.
Narita
,
K.
Kataoka
,
N.
Isomura
,
K.
Kitazumi
, and
T.
Mori
, “
Band offset of Al1xSixOy mixed oxide on GaN evaluated by hard X-ray photoelectron spectroscopy
,”
Jpn. J. Appl. Phys.
56
,
04CG07
(
2017
).
20.
D.
Kikuta
,
K.
Itoh
,
T.
Narita
, and
T.
Mori
, “
Al2O3/SiO2 nanolaminate for a gate oxide in a GaN-based MOS device
,”
J. Vac. Sci. Technol. A
35
,
01B122
(
2017
).
21.
D.
Kikuta
,
K.
Ito
,
T.
Narita
, and
T.
Kachi
, “
Highly reliable AlSiO gate oxides formed through post-deposition annealing for GaN-based MOS devices
,”
Appl. Phys. Express
13
,
026504
(
2020
).
22.
K.
Chokawa
,
T.
Narita
,
D.
Kikuta
,
K.
Shiozaki
,
T.
Kachi
,
A.
Oshiyama
, and
K.
Shiraishi
, “
Absence of oxygen-vacancy-related deep levels in the amorphous mixed oxide (Al2O3)1x(SiO2)x: First-principles exploration of gate oxides in GaN-based power devices
,”
Phys. Rev. Appl.
14
,
014034
(
2020
).
23.
K.
Chokawa
,
E.
Kojima
,
M.
Araidai
, and
K.
Shiraishi
, “
Investigation of the GaN/Al2O3 interface by first principles calculations
,”
Phys. Stat. Solidi B
255
,
1700323
(
2018
).
24.
K.
Chokawa
,
K.
Shiraishi
, and
A.
Oshiyama
, “
Defect-free interface between amorphous (Al2O3)1x(SiO2)x and GaN(0001) revealed by first-principles simulated annealing technique
,”
Appl. Phys. Lett.
119
,
011602
(
2021
).
25.
P.
McMillan
and
B.
Piriou
, “
The structures and vibrational spectra of crystals and glasses in the silica-alumina system
,”
J. Non-Cryst. Solids
53
,
279
(
1982
).
26.
B. T.
Poe
,
P. F.
McMillan
,
B.
Cote
,
D.
Massiot
, and
J. P.
Coutures
, “
Silica-alumina liquids: In-situ study by high-temperature aluminum-27 NMR spectroscopy and molecular dynamics simulation
,”
J. Phys. Chem.
96
,
8220
(
1992
).
27.
J. A.
Pask
, “
Importance of starting materials on reactions and phase equilibria in the Al2O3-SiO2 system
,”
J. Eur. Ceram. Soc.
16
,
101
(
1996
).
28.
M.
Okuno
,
N.
Zotov
,
M.
Schmücker
, and
H.
Schneider
, “
Structure of SiO2–Al2O3 glasses: Combined X-ray diffraction, IR and Raman studies
,”
J. Non-Cryst. Solids
351
,
1032
(
2005
).
29.
Y.
Wada
,
H.
Mizobata
,
M.
Nozaki
,
T.
Kobayashi
,
T.
Hosoi
,
T.
Kachi
,
T.
Shimura
, and
H.
Watanabe
, “
Insight into interface electrical properties of metal–oxide–semiconductor structures fabricated on Mg-implanted GaN activated by ultra-high-pressure annealing
,”
Appl. Phys. Lett.
120
,
082103
(
2022
).
30.
M. D.
Pashley
,
K. W.
Haberern
,
W.
Friday
,
J. M.
Woodall
, and
P. D.
Kirchner
, “
Structure of GaAs(001) (2×4)c(2×8) determined by scanning tunneling microscopy
,”
Phys. Rev. Lett.
60
,
2176
(
1988
).
31.
A.
Ourmazd
,
D. W.
Taylor
,
J. A.
Rentschler
, and
J.
Bevk
, “
Si SiO2 transformation: Interfacial structure and mechanism
,”
Phys. Rev. Lett.
59
,
213
(
1987
).
32.
T.
Yamasaki
,
C.
Kaneta
,
T.
Uchiyama
,
T.
Uda
, and
K.
Terakura
, “
Geometric and electronic structures of SiO2/Si(001) interfaces
,”
Phys. Rev. B
63
,
115314
(
2001
).
33.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
34.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
35.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
36.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
37.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
38.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened coulomb potential
,”
J. Chem. Phys.
118
,
8207
(
2003
).
39.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
40.
A. F.
Wright
and
J. S.
Nelson
, “
Consistent structural properties for AlN, GaN, and InN
,”
Phys. Rev. B
51
,
7866
(
1995
).
41.
S.
Maintz
,
V. L.
Deringer
,
A. L.
Tchougreeff
, and
R.
Dronskowski
, “
Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids
,”
J. Comput. Chem.
34
,
2557
(
2013
).
42.
S.
Maintz
,
V. L.
Deringer
,
A. L.
Tchougreeff
, and
R.
Dronskowski
, “
LOBSTER: A tool to extract chemical bonding from plane-wave based DFT
,”
J. Comput. Chem.
37
,
1030
(
2016
).
43.
K.
Momma
and
F.
Izumi
, “
VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
(
2011
).
44.
R.
Manaila
,
A.
Dévényi
, and
E.
Candet
, “
Structural order in amorphous aluminas
,”
Thin Solid Films
116
,
289
(
1984
).
45.
S.-M.
Lee
,
D. G.
Cahill
, and
T. H.
Allen
, “
Thermal conductivity of sputtered oxide films
,”
Phys. Rev. B
52
,
253
(
1995
).
46.
A.
Winkler
,
J.
Horbach
,
W.
Kob
, and
K.
Binder
, “
Structure and diffusion in amorphous aluminum silicate: A molecular dynamics computer simulation
,”
J. Chem. Phys.
120
,
384
(
2004
).
47.
V. V.
Hoang
,
N. N.
Linh
, and
N. H.
Hung
, “
Structure and dynamics of liquid and amorphous Al2O3.2SiO2
,”
Eur. Phys. J. Appl. Phys.
37
,
111
(
2007
).
48.
N. N.
Linh
and
V. V.
Hoang
, “
Surface structure and structural point defects of liquid and amorphous aluminosilicate nanoparticles
,”
J. Phys.: Condens. Matter
20
,
265005
(
2008
).
You do not currently have access to this content.