Two-dimensional (2D) titanium disulfide (TiS2) is the lightest transition-metal dichalcogenide (TMD). It exhibits relatively better adsorption and diffusion of sodium (Na) and potassium (K) ions than other TMDs, such as MoS2 (molybdenum disulfide) and ReS2 (rhenium disulfide), making it a promising anode material for alkali-ion batteries. Previous studies have found that doping significantly enhances the adsorption and diffusion capabilities of 2D TMDs. For the first time, this work reports the adsorption of Na and K ions on doped TiS2 monolayers using first-principles calculations, where the Ti atom is substituted by 3d-transition metals, including iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu). Metal-atom doping induces remarkably stronger binding of alkali ions on the surface of TiS2, with adsorption energies ranging from 2.07 to 2.48 eV for Na and 2.59 to 3.00 eV for K. The diffusion barrier energies for alkali ions decrease in the proximity of the doping site and increase as the ions travel away from the doping site for Fe-, Co-, and Ni-doped TiS2. The average open circuit voltage increases dramatically when Na ions are adsorbed on Fe-doped TiS2 (by 62%) and Co-doped TiS2 (by 61%), while K ions result in a moderate improvement of 9% and 8%, respectively. These findings suggest that metal-atom doping considerably improves the electrochemical properties of 2D TiS2, potentially enabling its use as anode materials in Na- and K-ion batteries.

1.
L.
Peng
,
Y.
Zhu
,
D.
Chen
,
R. S.
Ruoff
, and
G.
Yu
, “
Two-dimensional materials for beyond-lithium-ion batteries
,”
Adv. Energy Mater.
6
(
11
),
1600025
(
2016
).
2.
H.
Huang
,
R.
Xu
,
Y.
Feng
,
S.
Zeng
,
Y.
Jiang
,
H.
Wang
,
W.
Luo
, and
Y.
Yu
, “
Sodium/potassium-ion batteries: Boosting the rate capability and cycle life by combining morphology, defect and structure engineering
,”
Adv. Mater.
32
(
8
),
1904320
(
2020
).
3.
Y. P.
Deng
,
Z. G.
Wu
,
R.
Liang
,
Y.
Jiang
,
D.
Luo
,
A.
Yu
, and
Z.
Chen
, “
Layer-based heterostructured cathodes for lithium-ion and sodium-ion batteries
,”
Adv. Funct. Mater.
29
(
19
),
1808522
(
2019
).
4.
P.
Rozier
and
J. M.
Tarascon
, “
Li-rich layered oxide cathodes for next-generation Li-ion batteries: Chances and challenges
,”
J. Electrochem. Soc.
162
(
14
),
A2490
(
2015
).
5.
M. M.
Thackeray
,
C.
Wolverton
, and
E. D.
Isaacs
, “
Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries
,”
Energy Environ. Sci.
5
(
7
),
7854
7863
(
2012
).
6.
X.
Zhang
,
L.
Hou
,
A.
Ciesielski
, and
P.
Samorì
, “
2D materials beyond graphene for high-performance energy storage applications
,”
Adv. Energy Mater.
6
(
23
),
1600671
(
2016
).
7.
B.
Chen
,
D.
Chao
,
E.
Liu
,
M.
Jaroniec
,
N.
Zhao
, and
S. Z.
Qiao
, “
Transition metal dichalcogenides for alkali metal ion batteries: Engineering strategies at the atomic level
,”
Energy Environ. Sci.
13
(
4
),
1096
1131
(
2020
).
8.
Z.
Hu
,
Z.
Tai
,
Q.
Liu
,
S. W.
Wang
,
H.
Jin
,
S.
Wang
,
W.
Lai
,
M.
Chen
,
L.
Li
,
L.
Chen
,
Z.
Tao
, and
S. L.
Chou
, “
Ultrathin 2D TiS2 nanosheets for high capacity and long-life sodium ion batteries
,”
Adv. Energy Mater.
9
(
8
),
1803210
(
2019
).
9.
R.
Tian
,
A.
Wu
,
G.
Zhang
,
J.
Liu
,
R. A. P.
Camacho
,
W.
Yu
,
S.
Zhou
,
M.
Yao
, and
H.
Huang
, “
Adsorption and diffusion of alkali metals (Li, Na, and K) on heteroatom-doped monolayer titanium disulfide
,”
Dalton Trans.
50
(
20
),
7065
7077
(
2021
).
10.
A. K.
Nair
,
C. M.
Da Silva
, and
C. H.
Amon
, “
Tuning the adsorption and diffusion capabilities of titanium disulfide monolayers by doping and strain engineering: Implications for lithium-ion batteries
,”
Appl. Surf. Sci.
600
,
154164
(
2022
).
11.
A.
Samad
,
A.
Shafique
, and
Y. H.
Shin
, “
Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional TiS2
,”
Nanotechnology
28
(
17
),
175401
(
2017
).
12.
A.
Jena
and
B. R. K.
Nanda
, “
Engineering diffusivity and operating voltage in lithium iron phosphate through transition-metal doping
,”
Phys. Rev. Appl.
7
(
3
),
034007
(
2017
).
13.
H. J.
Yan
,
B.
Xu
,
S. Q.
Shi
, and
C. Y.
Ouyang
, “
First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries
,”
J. Appl. Phys.
112
(
10
),
104316
(
2012
).
14.
R. K.
Chouhan
and
P.
Raghani
, “
Enhanced Li capacity in functionalized graphene: A first principle study with van der Waals correction
,”
J. Appl. Phys.
118
(
12
),
125101
(
2015
).
15.
H.
Lin
,
D. D.
Yang
,
N.
Lou
,
A. L.
Wang
,
S. G.
Zhu
, and
H. Z.
Li
, “
Defect engineering of black phosphorene towards an enhanced polysulfide host and catalyst for lithium-sulfur batteries: A first principles study
,”
J. Appl. Phys.
125
(
9
),
094303
(
2019
).
16.
S.
Mukherjee
,
A.
Banwait
,
S.
Grixti
,
N.
Koratkar
, and
C. V.
Singh
, “
Adsorption and diffusion of lithium and sodium on defective rhenium disulfide: A first principles study
,”
ACS Appl. Mater. Interfaces
10
(
6
),
5373
5384
(
2018
).
17.
L.
Guo
,
J.
Li
,
H.
Wang
,
N.
Zhao
,
C.
Shi
,
L.
Ma
,
C.
He
,
F.
He
, and
E.
Liu
, “
Dopant-modulating mechanism of lithium adsorption and diffusion at the graphene/Li2S interface
,”
Phys. Rev. Appl.
9
(
2
),
024010
(
2018
).
18.
Y.
Pang
,
Z.
Lu
,
S. H.
Talib
,
X.
Li
,
M.
Wang
,
X.
Zhang
,
Z.
Yang
, and
R.
Wu
, “
Mechanism of efficient adsorption of Na atoms on electron-deficient doped Mo S2 for battery electrodes
,”
Phys. Rev. Appl.
18
(
3
),
034061
(
2022
).
19.
D.
Adekoya
,
S.
Zhang
, and
M.
Hankel
, “
Boosting reversible lithium storage in two-dimensional C3N4 by achieving suitable adsorption energy via Si doping
,”
Carbon
176
,
480
487
(
2021
).
20.
M.
Molaei
,
S. M.
Mousavi-Khoshdel
, and
M.
Ghiasi
, “
Exploring the effect of phosphorus doping on the utility of g-C3N4 as an electrode material in Na-ion batteries using DFT method
,”
J. Mol. Model.
25
(
8
),
256
(
2019
).
21.
W.
Cha
,
I. Y.
Kim
,
J. M.
Lee
,
S.
Kim
,
K.
Ramadass
,
K.
Gopalakrishnan
,
S.
Premkumar
,
S.
Umapathy
, and
A.
Vinu
, “
Sulfur-doped mesoporous carbon nitride with an ordered porous structure for sodium-ion batteries
,”
ACS Appl. Mater. Interfaces
11
(
30
),
27192
27199
(
2019
).
22.
T.
Kesavan
,
T.
Partheeban
,
M.
Vivekanantha
,
N.
Prabu
,
M.
Kundu
,
P.
Selvarajan
,
S.
Umapathy
,
A.
Vinu
, and
M.
Sasidharan
, “
Design of P-doped mesoporous carbon nitrides as high-performance anode materials for Li-ion battery
,”
ACS Appl. Mater. Interfaces
12
(
21
),
24007
24018
(
2020
).
23.
S.
Tian
and
Q.
Tang
, “
Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction via single atom doping
,”
J. Mater. Chem. C
9
(
18
),
6040
6050
(
2021
).
24.
D. S.
Tchitchekova
,
A.
Ponrouch
,
R.
Verrelli
,
T.
Broux
,
C.
Frontera
,
A.
Sorrentino
,
F.
Barde
,
N.
Biskup
,
M. E. A.
Dompablo
, and
M. R.
Palacin
, “
Electrochemical intercalation of calcium and magnesium in TiS2: Fundamental studies related to multivalent battery applications
,”
Chem. Mater.
30
(
3
),
847
856
(
2018
).
25.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
(
24
),
17953
(
1994
).
26.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
Fabris
,
G.
Fratesi
,
S.
de Gironcoli
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
Quantum espresso: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
(
39
),
395502
(
2009
).
27.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
28.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
(
12
),
5188
(
1976
).
29.
S.
Smidstrup
,
T.
Markussen
,
P.
Vancraeyveld
,
J.
Wellendorff
,
J.
Schneider
,
T.
Gunst
,
B.
Verstichel
,
D.
Stradi
,
P. A.
Khomyakov
,
U. G.
Vej-Hansen
,
M. E.
Lee
,
S. T.
Chill
,
F.
Rasmussen
,
G.
Penazzi
,
F.
Corsetti
,
A.
Ojanperä
,
K.
Jensen
,
M. L. N.
Palsgaard
,
U.
Martinez
,
A.
Blom
,
M.
Brandbyge
, and
K.
Stokbro
, “
QuantumATK: An integrated platform of electronic and atomic-scale modelling tools
,”
J. Phys.: Condens. Matter
32
(
1
),
015901
(
2019
).
30.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
31.
B.
Liu
,
J.
Yang
,
Y.
Han
,
T.
Hu
,
W.
Ren
,
C.
Liu
,
Y.
Ma
, and
C.
Gao
, “
Electronic structure of TiS2 and its electric transport properties under high pressure
,”
J. Appl. Phys.
109
(
5
),
053717
(
2011
).
32.
M.
Al-Zareer
,
A.
Michalak
,
C.
Da Silva
, and
C. H.
Amon
, “
Predicting specific heat capacity and directional thermal conductivities of cylindrical lithium-ion batteries: A combined experimental and simulation framework
,”
Appl. Therm. Eng.
182
,
116075
(
2021
).
33.
E.
Olsson
,
G.
Chai
,
M.
Dove
, and
Q.
Cai
, “
Adsorption and migration of alkali metals (Li, Na, and K) on pristine and defective graphene surfaces
,”
Nanoscale
11
(
12
),
5274
5284
(
2019
).
34.
S.
Mukherjee
,
L.
Kavalsky
, and
C. V.
Singh
, “
Ultrahigh storage and fast diffusion of Na and K in blue phosphorene anodes
,”
ACS Appl. Mater. Interfaces
10
(
10
),
8630
8639
(
2018
).
35.
J.
Zhang
,
X. Y.
Qin
,
H. X.
Xin
,
D.
Li
, and
C. J.
Song
, “
Thermoelectric properties of Co-doped TiS2
,”
J. Electron. Mater.
40
(
5
),
980
986
(
2011
).
36.
N.
Rohaizad
,
C. C.
Mayorga-Martinez
,
Z.
Sofer
,
R. D.
Webster
, and
M.
Pumera
, “
Niobium-doped TiS2: Formation of TiS3 nanobelts and their effects in enzymatic biosensors
,”
Biosens. Bioelectron.
155
,
112114
(
2020
).
37.
R.
Tian
,
C.
Liu
,
G.
Zhang
,
A.
Wu
,
M.
Yao
, and
H.
Huang
, “
Point defects-induced adsorption and diffusion of lithium on monolayer titanium disulfide: A first-principles study
,”
Appl. Surf. Sci.
553
,
149448
(
2021
).
38.
T.
Liu
,
X.
Zhang
,
M.
Xia
,
H.
Yu
,
N.
Peng
,
C.
Jiang
,
M.
Shui
,
Y.
Xie
,
T. F.
Yi
, and
J.
Shu
, “
Functional cation defects engineering in TiS2 for high-stability anode
,”
Nano Energy
67
,
104295
(
2020
).
39.
J.
Zhang
,
X. Y.
Qin
,
D.
Li
, and
H. Z.
Dong
, “
The electrical and thermal conductivity and thermopower of nickel doped compounds (NixTi1x)1+yS2 at low temperatures
,”
J. Phys. D: Appl. Phys.
39
(
6
),
1230
(
2006
).
40.
R.
Daou
,
H.
Takahashi
,
S.
Hébert
,
M.
Beaumale
,
E.
Guilmeau
, and
A.
Maignan
, “
Intrinsic effects of substitution and intercalation on thermal transport in two-dimensional TiS2 single crystals
,”
J. Appl. Phys.
117
(
16
),
165101
(
2015
).
41.
Y. E.
Putri
,
C.
Wan
,
R.
Zhang
,
T.
Mori
, and
K.
Koumoto
, “
Thermoelectric performance enhancement of (BiS)1.2 (TiS2)2 misfit layer sulfide by chromium doping
,”
J. Adv. Ceram.
2
(
1
),
42
48
(
2013
).
42.
J.
Zhang
,
X. Y.
Qin
,
D.
Li
,
H. X.
Xin
,
L.
Pan
, and
K. X.
Zhang
, “
The transport and thermoelectric properties of Cd doped compounds (CdxTi1x)1+yS2
,”
J. Alloys Compd.
479
(
1–2
),
816
820
(
2009
).
43.
M. I.
Khan
,
G.
Nadeem
,
A.
Majid
, and
M.
Shakil
, “
A DFT study of bismuthene as anode material for alkali-metal (Li/Na/K)-ion batteries
,”
Mater. Sci. Eng.: B
266
,
115061
(
2021
).
44.
Z.
Zhang
,
M.
Yang
,
N.
Zhao
,
L.
Wang
, and
Y.
Li
, “
Two-dimensional transition metal dichalcogenides as promising anodes for potassium ion batteries from first-principles prediction
,”
Phys. Chem. Chem. Phys.
21
(
42
),
23441
23446
(
2019
).
45.
M.
Mortazavi
,
C.
Wang
,
J.
Deng
,
V. B.
Shenoy
, and
N. V.
Medhekar
, “
Ab initio characterization of layered MoS2 as anode for sodium-ion batteries
,”
J. Power Sources
268
,
279
286
(
2014
).
46.
X.
Sun
and
Z.
Wang
, “
Adsorption and diffusion of lithium on heteroatom-doped monolayer molybdenum disulfide
,”
Appl. Surf. Sci.
455
,
911
918
(
2018
).
47.
K. C.
Wasalathilake
,
G. A.
Ayoko
, and
C.
Yan
, “
Effects of heteroatom doping on the performance of graphene in sodium-ion batteries: A density functional theory investigation
,”
Carbon
140
,
276
285
(
2018
).
48.
D. H.
Wu
,
Y. F.
Li
, and
Z.
Zhou
, “
First-principles studies on doped graphene as anode materials in lithium-ion batteries
,”
Theor. Chem. Acc.
130
(
2
),
209
213
(
2011
).
49.
S.
Gong
and
Q.
Wang
, “
Boron-doped graphene as a promising anode material for potassium-ion batteries with a large capacity, high rate performance, and good cycling stability
,”
J. Phys. Chem. C
121
(
44
),
24418
24424
(
2017
).
50.
S.
Wu
,
Y.
Du
, and
S.
Sun
, “
Transition metal dichalcogenide based nanomaterials for rechargeable batteries
,”
Chem. Eng. J.
307
,
189
207
(
2017
).
51.
W.
Wang
,
Z.
Sun
,
W.
Zhang
,
Q.
Fan
,
Q.
Sun
,
X.
Cui
, and
B.
Xiang
, “
First-principles investigations of vanadium disulfide for lithium and sodium ion battery applications
,”
RSC Adv.
6
(
60
),
54874
54879
(
2016
).
52.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
, “
A grid-based Bader analysis algorithm without lattice bias
,”
J. Phys.: Condens. Matter
21
(
8
),
084204
(
2009
).

Supplementary Material

You do not currently have access to this content.